All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.


Robust information hiding and extraction algorithms in speech

Author(s): Bao Yongqiang, Xi Ji, Xu Haiyan

Speech with hidden data will be disturbed and damaged by a variety of interference, such as noises, codec and filters, etc. To improve the robustness, the speech information hiding and extraction algorithmbased on PSO-NN (Particle SwarmOptimizer Neural Network) is proposed. To improve the performance of anti-channel interference, the algorithmadds redundant data into the hidden data and then trains at the decoding end. At the same time, to improve the training efficiency and decoding accuracy, the algorithm firstly uses wavelet decomposition to get high-frequency coefficients of the signal, and then calculates the characteristic of highfrequency coefficients. At last, the algorithm selects 32 optimal features to train the neural network based on the FDR (Fish Discriminant Ratio). Simulation results show that the proposed algorithm improves the robustness of speech information hiding approach against filtering attack, noise attack, sampling attack and compression attack. Though the improvement on tensile attacks is ineffective, it was also better than others neural network algorithm.

Share this       

Table of Contents

Recommended Conferences

International Congress on Biotechnology

Tokyo, Japan

24th Global Congress on Biotechnology

Dubai, UAE
izmir escort izmir escort bursa escort antalya escort izmir escort porno porno izle türk porno eskişehir escort bartın escort burdur escort havalandırma izmir escort bursa escort porno indir izle escort izmir