All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.


Elimination of Methyl Orange Using a Novel Anionic Adsorbent Prepared by Radiation Grafting Followed by Chemical Treatment

Author(s): Nazia Rahman, Sadoara Sadika, Mahbub Kabir, Shahnaz Sultana, Md. Nabul Sardar, Md. Homayon Kabir

In present research work, γ-ray initiated grafting of glycidyl methacrylate (GMA) on non-woven polyethylene fabrics was followed by amine functionalization. Dependence of amination yield on degree of grafting was investigated. Extensive examinations on the adsorption of anionic dye methyl orange (MO) from aqueous solution by the functionalized GMA-g-non woven PE fabrics were conducted. Influence of variation of adsorption environment likely contact time, temperature, pH and initial metal ion concentration on MO adsorption aptitude was experimented. The optimal condition that provided maximum MO adsorption was identified to be contact time 48 h, initial metal concentration 500 ppm, pH 1.759 and temperature 80 ºC. To understand the equilibrium between MO and the absorbent system Langmuir isotherm model was considered. Good fitting with Langmuir isotherm model suggested that MO adsorption was restricted to one molecular layer and the highest monolayer adsorption capacity calculated was 60.60 mg/g. The adsorption kinetics was analyzed using pseudo-first-order and pseudo-second-order models. The adsorption of MO was successfully inferred with pseudo- second-order model. The bonding between different groups and the surface morphology of the adsorbent was explored by FTIR ad SEM Analysis. Successful desorption of MO followed by reuse of the regenerated adsorbent fabric revealed the future prospect of the reusable adsorbent.

Share this       
Awards Nomination 20+ Million Readerbase

Table of Contents

Google Scholar citation report
Citations : 378

Analytical Chemistry: An Indian Journal received 378 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Cosmos IF
  • Electronic Journals Library
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs

View More