Parası kalmadığı için otobüse binemiyordur ailesi porno izle ona daha yeni para gönderdiği için tekrar porno istemeye utanınca mecburen otostop çekmek için youporn çantasını alarak yol kenarına gelir etekli porno liseli türk kız yol kenarında dururken yanına yaklaşan porno kibar bir gencin onu gideceği yere kadar bırakmak porno izle istemesine çok mutlu olur arabaya bindiklerinde gideceği yer ile porno arabayı kullanan adamın gittiği yer arasında çok mesafe sex izle farkı olduğunu anlayan türk kız bu yaptığı porno indir iyilik karşısında arabada ona memelerini açar porno sapıklaşan adam yol kenarındaki hotelde durarak porno izle üniversiteli otostop çeken türk kızına odada sakso çektirip sikerPotency of tea plantation for carbon sequestration besides as a cash crop in wet tropical region
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Short communication
, Volume: 17( 7)

Potency of tea plantation for carbon sequestration besides as a cash crop in wet tropical region

 Yulnafatmawita
Universitas Andalas, Padang, INDONESIA

Abstract

Statement of the Problem: Use of fossil energy in human activities has increased CO2 concentration in earth atmosphere causing global warming. An alternative way to counter the increasing amount of CO2 in atmosphere is by improving area of green landscape, such as tea plantation. Tea is mainly planted as a cash crop, but it can reduce CO2 atmosphere and increase C sequestration in soil. Since tea can stand >25 years old, it can consume high amount of CO2 atmosphere during photosynthesis process. Then, the litters (leaves and small branches) produced either which fall naturally or after being trimmed, will contribute OC to soil. Since the soil is not cultivated during the entire life of tea, the OC will be accumulated by time, even in sloping area.

Statement of the Problem: Use of fossil energy in human activities has increased CO2 concentration in earth atmosphere causing global warming. An alternative way to counter the increasing amount of CO2 in atmosphere is by improving area of green landscape, such as tea plantation. Tea is mainly planted as a cash crop, but it can reduce CO2 atmosphere and increase C sequestration in soil. Since tea can stand >25 years old, it can consume high amount of CO2 atmosphere during photosynthesis process. Then, the litters (leaves and small branches) produced either which fall naturally or after being trimmed, will contribute OC to soil. Since the soil is not cultivated during the entire life of tea, the OC will be accumulated by time, even in sloping area. Methodology & Theoretical Orientation: This research was conducted using survey method, on which soil samples were taken at 15-25% slope level under 3 different age (9, 21, and 36 years old) of tea plantation (purposive sampling) in a wet tropical area (>3,000 mm annual rainfall) Solok Regency, Indonesia. The area is located on the slope of mount Talang (1200-1400 m asl). Soil was sampled from 0-30 cm soil depth. Soil OC and BD were analysed, and then calculated the OC sequestered in each soil depth by using formula suggested by Yulnafatmawita and Yasin (2018). As a comparison, soil samples were also taken from secondary forest nearby. Findings: Organic carbon sequestered under tea plantation increased by increasing crop age from 9 to 21, and to 36 years old. The amount of OC sequestration under tea plantation was much higher than that under secondary forest. Conclusion & Significance: Tea plantation in sloping area under wet tropical region can sequester much higher (1.95- 3.16 times) OC in the soil than that under secondary forest nearby.
Google Scholar citation report
Citations : 355

Environmental Science: An Indian Journal received 355 citations as per Google Scholar report

Indexed In

  • CASS
  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Cosmos IF
  • Directory of Research Journal Indexing (DRJI)
  • Secret Search Engine Labs
  • Scholar Article Impact Factor (SAJI))

Read More

Flyer