Parası kalmadığı için otobüse binemiyordur ailesi porno izle ona daha yeni para gönderdiği için tekrar porno istemeye utanınca mecburen otostop çekmek için youporn çantasını alarak yol kenarına gelir etekli porno liseli türk kız yol kenarında dururken yanına yaklaşan porno kibar bir gencin onu gideceği yere kadar bırakmak porno izle istemesine çok mutlu olur arabaya bindiklerinde gideceği yer ile porno arabayı kullanan adamın gittiği yer arasında çok mesafe sex izle farkı olduğunu anlayan türk kız bu yaptığı porno indir iyilik karşısında arabada ona memelerini açar porno sapıklaşan adam yol kenarındaki hotelde durarak porno izle üniversiteli otostop çeken türk kızına odada sakso çektirip sikerPrediction of Drag Coefficient of Spherical Particle Using ANN, ANFIS, Regression and GA Optimization| Abstract

44 7460 854 031

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Prediction of Drag Coefficient of Spherical Particle Using ANN, ANFIS, Regression and GA Optimization

Author(s): Saroj Kumar Samantaray, Siddharth Sekhar Sahoo, Soumya Sanjeeb Mohapatra and Basudeb Munshi

The present work includes the successful prediction of the experimental drag coefficients (CD) as function Reynolds number (Re), collected from the open source literatures by regression analysis method, Artificial intelligence models i.e. artificial neural network (ANN), adaptive Neuro fuzzy interface system (ANFIS) and Genetic Algorithm (GA). A non-linear equation is assumed to relate drag coefficient and Reynolds number and optimized using GA. To confirm the predicted output, twenty-one numbers of inputs are tested and simulated. The comparative study of the prediction models is carried out in terms of the error functions and coefficient of determination. This study has revealed that ANFIS neural model has predicted the desired drag coefficient with minimal error and high coefficient of determination and outperformed the rest prediction models.


Share this       
Google Scholar citation report
Citations : 4955

International Journal of Chemical Sciences received 4955 citations as per Google Scholar report

Indexed In

  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • Cosmos IF
  • Geneva Foundation for Medical Education and Research

Read More

Flyer
Yeni acilan ve cok kazancli olan Matadorbet guncel giris yapip uyelik gerceklestirebilirsiniz.