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Introduction 

Drag coefficient is a very important hydrodynamic parameter for the successful design of industrial processes like clarifiers, 

thickeners, slurry transporter, cyclone separators, fluidized beds, dust collectors, coal combustors, electrostatic precipitation, 

and spray drying. Different geometrical shaped particles are present in the process. However, a large volume of research 

work is available on the drag coefficients of the regular shaped: spherical and cylindrical particles [1-3]. When a solid object 

is moving through a fluid medium, the aggregate pressure connected on it called pressure drag. The friction drag is a resistive 

force that appears due to relative motion of the solid body with respect to the fluid medium. The total drag force includes 

both the pressure drag and friction drag [4]. The movement of an object in fluid medium observes three types of forces, the 

weight, W of the object acting downward, and the buoyancy¸ FB and the drag force, FD acting upward. The free body 

diagram at equilibrium is shown in FIG. 1. 

Abstract  

The present work includes the successful prediction of the experimental drag coefficients (CD) as function Reynolds number (Re), 

collected from the open source literatures by regression analysis method, Artificial intelligence models i.e. artificial neural network 

(ANN), adaptive Neuro fuzzy interface system (ANFIS) and Genetic Algorithm (GA). A non-linear equation is assumed to relate drag 

coefficient and Reynolds number and optimized using GA. To confirm the predicted output, twenty-one numbers of inputs are tested 

and simulated. The comparative study of the prediction models is carried out in terms of the error functions and coefficient of 

determination. This study has revealed that ANFIS neural model has predicted the desired drag coefficient with minimal error and 

high coefficient of determination and outperformed the rest prediction models. 
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FIG. 1. A free-falling particle under the action of gravity [4]. 

 

At equilibrium, the force balance equation can be written as 

 B DW F F     (1)  

Mathematically the drag force can be written as  

21

2
D F DF V C A   (2) in which V is the terminal velocity of solid particle, F  is the density of liquid, DC  is the 

drag coefficient. The derived expression of the drag coefficient form Equation (2) is  

2
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where A is the projected area of immersed particle, For spherical particle  

2

4
SA D


    (4) 

in which DS is the diameter of sphere. 

The drag coefficient mostly varies with the particle Reynolds number defined as  

Re F SD V


    (5)  

where μ is the kinematic viscosity of liquid? 

For low Re (creeping flow regime) i.e., Re<0.5, the CD equation is reduced to Stoke’s equation as 

24

Re
CD     (6)  

Many researchers proposed empirical and semi-empirical equations for CD-Re relation each of which is valid for limited 

range of Reynolds number [4-7] A summary of those relations is provided in TABLE 1 for the sphere. Similar kind of 
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relations are also available for other type of particle shapes [8-10]. All the references in TABLE 1 also contain their own 

experimental data which are used in the present work for the prediction purposes.  

 

Since, the proposed empirical and semi-empirical equations have their own range of validations; these cannot be used for the 

whole range of Reynolds number. Cheng developed unique empirical equations for the drag coefficients with Re which 

predicted better CD as compared to other emperical relations available in the literature. Cheng used the 408 number of data of 

[11] which are nothing but the filtered experimental data available in the previous literature, and these data show a very 

smooth variation of CD with Re. Therefore, it is quite natural to have high accuracy predicted result by Cheng. Present work 

felt the requirement of the improved flexible model to predict all the 745 number of the CD – Re data with high accuracy. So, 

it has become a necessary to develop a high-accuracy predictive model for the drag coefficient, which covers the full range of 

Re (0 to ∞). The present work has prdicted the drag coefficient with Reynolds number with the help data fiiting, ANN, 

ANFIS and Genetic Algoithm tools. MATLABTM software is employed for aforesaid analysis. 

 

TABLE 1. Proposed CD-Re relationship. 

 

Researchers CD-Re relationship Reynolds number range 

Cheng 
0.43 0.3824

(1 0.27 ) 0.47(1 ( 0.04 ))D Re expC Re
Re

     
610Re   

Brown and 

Lawler [11] 
0.681

1

24 0.407
(1 0.15 )

1 8710
DC Re

Re Re
  


 

52 10Re    

 

 

 

 

 

 

Clift et al. [12] 

24 3

16
DC

Re
   

0.01Re   

0.82 0.0524
(1 0.1315 )logRe

DC Re
Re

    
0.01 20Re   

0.630524
(1 0.1935 )DC Re

Re
    

 

20 260Re   

21.6435 1.1242 0.155810 logRe log Re

DC    
560 1 02 0Re  

2 32.4571 2.5558 0.9295 0.104910 logRe log Re log Re

DC      
41500 1.2 10Re    

21.9181 0.637 0.06310 logRe log Re

DC     
4 41.2 10 1.4 10Re    

24.339 1.5809 0.15410 logRe log Re

DC     
4 54.4 10 3.38 10Re    

29.78 5.3logDC Re   
5 53.38 10 4 10Re   

0.1log 0.49DC Re   
5 64 10 10Re   
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40.19 8 10
DC

Re

 
  

610 Re  

Flemmer and 

Banks [13] 
.369 0.431

2

024 0.124
10 0.261 0, .105

1
DC Re Re

Re log Re

    


 

53 10Re    

Turton and 

Levenspiel [14] 
0.657

1.09

24 0.413
(1 0.173 )

1 16300
DC Re

Re Re
 


 

52 10Re    

Engelund and 

Hansen [15] 1.5
24

DC
Re

   
52 10Re    

Khan and 

Rechardson [5] 

0.328 0.067 3.18(2.49 0.34 )DC Re Re   
52 10Re    

Clift and 

Gauvin [12] 
0.687

1.16

24 0.42
(1 0.15 )

1 42500
DC Re

Re Re
 


  

For all range of Re 

 

Data base 

In the literature listed in TABLE 1, the precise data of drag coefficient and Reynolds number are not available; these are 

reported by the graphs. Hence in order to cover the wide ranges of conditions, experimental drag coefficient data have been 

picked up from the open literatures listed in TABLE 1 by using graph digitizer. There are altogether 745 data points. 

 

Prediction Models 

Regression analysis 

Regression analysis is a well-known curve fitting technique for the nonlinear set of experimental data. It is utilized to 

describe the relationship between the independent and dependent variables up to the nth order. The main purpose of the 

regression model is to find a line with the minimum square distance between the experimental data point and line. 

Henceforth, this model is also called as the least square method [16,17]. A successful regression obtained with some constant 

terms. It is denoted as E(y/x), where y is the dependent and x is the independent variable. The goodness of predictive model 

is measured by following statistical terms. 

Average relative error (r)=
D cal D exp

D exp

|(C -C )|1
100(%)

|C |n
    (7) 

Sum of squared error (S1)=

2

D cal D exp

2

D exp

(C -C )

C
     (8) 

Sum of logarithmic deviation (S2)=
2( )D cal D callogC logC   (9) 

 

The analysis of variance (ANOVA) provides the information about the regression model, which includes R2 and MSE etc., 

The R2 (coefficient determination) explains the degree of fitting. A perfect regression has R2 close to one and minimum MSE 
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and absolute error percentage. The shape of the CD-Re experimental curve is like exponential shape, which gives the idea for 

polynomial regression. In this study second order (quadratic) and third order (cubic), regression is carried out. 

 

Artificial neural network 

ANN is a numerical model that is based on the human natural nerve framework, and it is used to obtain the solution of 

complex experimental and scientific problems. Based on the available experimental input and output data, it forecasts the 

output for any given input. Regardless of this, an ANN model does not require any empirical equation; but adjustment of 

individual tuning parameter is required to get a fit prediction. Artificial neural networks are comprised of layers. It consists of 

interconnected nodes called neurons with transfer function. Inputs are introduced to the network through input layer, which 

sent response to one or more hidden layers, where the weighted sum calculation is carried out using an arrangement of 

weighted connections. The final network output is obtained through the output layer [18-20]. The basic ANN architecture and 

the behavior of a neuron are shown in FIG. 2 and 3. 

 

 

FIG. 2. Basic ANN architecture. 

 

 

FIG. 3. Behavior of neuron. 

 

In network, the net input to a neuron is [18] 

 
1)

1

(
( )nn n

j ji ii
net w x 


   (10) 
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where 𝑤𝑖𝑗 is the weight between ith node in (n-1) layer and jth node in (n) layer, and 𝑥𝑗
𝑛−1  is the output of node 𝑗 in (n-1) 

layer. 

The weights in BPNN updated as [18] 

new old

j j jw w w     (11) 

Where,  

P
j j

E

W
w output


      (12) 

Where β, the learning rate parameter lies between 0 and 1. 
joutput  is the output of jth neuron. 

The net input to a neuron in any layer is the dot product of the input and the assigned weight factor. In the summation 

function, the input and weight factors can be associated in different ways before the transfer function. The net result of 

summation function is transferred to the algorithm based transfer function, where the comparison of summation result with 

the threshold takes place. There are different types of activation functions available, but the non-linear functions are widely 

used [19]. The type of activation functions and their ranges are given in TABLE 2. 

 

TABLE 2. Activation functions in ANN. 

Activation Function  Function  Range of function 

Pure-linear (PURELIN) ( )f x x  -∞, +∞ 

Log-Sigmoid (LOGSIG) 1
( )

1 x
f x

e



 

 0,1 

Tan-Sigmoid (TANSIG) 

2

2
( ) 1

1 x
f x

e
 


 

 -1,1 

 

 

Mostly MSE and absolute error percentage are used to evaluate the error [18,20]. MSE is an incremental process, where 

weights are corrected each time. The adjustment of error is an iterative process, which is done up to the tolerance/goal limit. 

The basic back propagation network learning is done by the gradient descent algorithm, which helps to minimize the MSE 

[18,20]. The biggest disadvantage of this algorithm is high time consuming. Aiming to replace the gradient descent 

algorithm, Levenberg-Marquardt back propagation algorithm (LMBP) is introduced, which incurs the minimum time 

consumption, high convergence, and low error profile. It is similar to the quasi-Newtonian method, where Hessian matrix is 

used. The details of the algorithm and weight adjustment of LMBP are described [21]. In this work LMBP algorithm is used 

for network training and learning. 
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Adaptive neuro-fuzzy interface system (ANFIS) 

The inherent advantages and disadvantages of fuzzy logic and neural network can be disappeared just by combing them. An 

adaptive neuro-fuzzy interface system (ANFIS) is a hybrid type of the neural network and fuzzy logic approach to predict the 

data for the nonlinear system of equation. The useful qualitative aspect of fuzzy logic and adaptive aspect of ANN are 

integrated into ANFIS, which makes the network more reliable, converging and more accurate [22,23]. The learning of 

network is done with ANN, and the gradient descent algorithm is used in the backpropagation learning of the network. The 

optimum gradient vector develops the precise modeling of input and output variable for a given set of data [17]. This system 

is based on a Sugeno system. It can simulate the mapping relation between the input and output data by a hybrid learning to 

calculate the optimal distribution of the membership functions. It is based worked on the fuzzy “if-then” type rules proposed 

by Takagi-Sugeno FIS [24]. The used ANFIS network has five layers; each layer includes some nodes represented by node 

function. The membership functions are tuned using the learning process with a hybrid model, which is a combination of 

back propagation and least square method [25]. 

 

Optimization by using GA 

Genetic algorithm (GA) which includes the concept of natural selection and survival of the fittest from natural evolution is a 

reliable and standard tool to find an optimum solution of a particular problem [26]. It starts with the evolution of population 

and chromosomes. A stochastic selection procedure is used to find the best chromosomes followed by the crossover and 

mutation. The best fitness value is evaluated and compared with other best values in population and changed as required. The 

algorithm stops when either a maximum number of generations is reached, or a satisfactory fitness level is achieved [19]. To 

develop the correlation of the drag coefficient, C_D with Re using GA toolbox available in MATLABTM, the following non-

linear equation for drag coefficient with Reynolds number is assumed. 

 

1 2 3

1 2 3 4DlogC X X logRe X logRe X logRe         (13) 

 

The objective function, which is minimized by GA is 

 

1 2 3 2

1 2 1 3 1 4 1( ( ) ( ) ( ) ( ) )Error Y i X X a i X a i X a i         (14) 

 

Where Y(i) is the experimental drag coefficient and a1(i) is the corresponding Reynolds number. X1, X2, X3 and X4 are the 

unknown parameters. For GA, to find the optimal solution, the tuning of some population size, selection method and 

crossover functions, mutation rate, migration, etc. are required. In this regard, the suggested guidelines are available in the 

literatures [27,28]. The parameters and functions which are used in this study are given in TABLE 3. 
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TABLE 3. Parameter setting for GA optimization. 

 

Options  Value and functions are used 

Population - 

a. Size 100 

b. Creation function Feasible population 

Fitness scaling Rank 

Selection Stochastic uniform 

Reproduction - 

a. Elite count 2 

b. Crossover function 0.8 

Crossover Scattered 

Mutation Constraint dependent 

Migration - 

a. Direction Forward 

b. Interval 20 

c. Fraction 0.2 

Stopping criteria 100 

 

Results and Discussion 

Prediction by regression model 

It is observed that third order (cubic) regression predicted outputs have a good agreement with the experimental data in FIG. 

4. The obtained regression model or equation for drag coefficient-Reynolds number is  

 

2 31.441 0.8532 0.06961 0.006536DLogC LogRe LogRe LogRe     (15) 

 

The R2 value is obtained as 0.999. The Equation (15) predicted the experimental drag coefficient data very closely at low and 

medium range of Reynolds number, whereas, a little deviation is observed at higher Reynolds number. The r, S1 and S2 

values for this model is given in TABLES 4-6. The best fit line equation for cubic polynomial regression is found to be 

Y=1.0T+(0.0023) (16) 

 

Where, 𝑌 is the predicted output by the regression analysis and 𝑇 is the experimental output. 

 

 

FIG. 4. Correlation of training patterns in cubic polynomial regression. 
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Prediction by ANN 

Selection of the number of hidden layers, the number of neurons in hidden layer, and the activation function is a challenge for 

any nonlinear system. It was suggested that for a linear and polynomial system only one layer is sufficient for suitable 

network training [19]. So, in this work, one hidden layer is chosen. Trial and error method in increasing order is used to find 

a suitable number of neuron in the hidden layer. It is noticed that after fourteen numbers of neurons in hidden layer, there was 

no change in MSE in FIG. 5. Hence, one hidden layer with fourteen neurons is adopted for the network training. To find the 

suitable activation function by keeping the constant number of neurons, several activation functions are considered. The 

transfer functions, LOGSIG and TANSIG, available in MATLAB are tested, and it is observed that TANSIG produces better 

result. The training parameters and the trained network for BPNN structure are given in TABLE 4 and in FIG. 6 respectively. 

 

 

 

FIG. 5. Variation of MSE as function of number of neurons. 

 

TABLE 4. Training parameters in ANN. 

 

Training parameter  Set value 

Hidden Layer   1 

Maximum number Epoch (No. of Iteration)  2000 

Validation at Fail  1000 

Goal (Tolerance limit)  1e-03 

 

 

 

 

FIG. 6. Trained BPNN network structure. 
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The r, S1 and S2 are computed while comparing the predicted drag coefficients of ANN with the respective experimental data. 

Arbitrarily twenty-one inputs are selected for training purpose to confirm the predicted output. After 90 epochs, the required 

MSE is reached as shown in FIG. 7. It is found that the simulated results followed the experimental output trend in FIG. 8. 

The plotregression command (in MATLABTM) is used for regression analysis, and the value of the coefficient of 

determination i.e., R2 is obtained as 0.999, which is very close to 1 and it indicates to the development of a perfect correlation 

between predicted output and experimental output in FIG. 9. The best fit line equation for ANN prediction is  

 

Y=(1.0)T+(0.0012)   (17) 

 

Where 𝑌 is the predicted output by ANN. 

The calculated r, S1 and S2 with R2 given in TABLE 6 reveals the good prediction for the drag coefficient by ANN. 

 

 

 

FIG. 7. The variation of mean squared error (MSE) with the number of epochs. 

 

 

 

 FIG. 8. Comparison of ANN simulated output with experimental output. 
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FIG. 9. Correlation of training patterns in ANN. 

Prediction by ANFIS 

Generalized bell-shaped membership function (gbell) is used in this study; the shape of gbell MF is shown in FIG. 10. It is 

found that there is no further improvement in MSE beyond the use of nine numbers of gbell membership functions given in 

FIG. 11. Hence, nine numbers of gbell memberships are used for ANFIS training, which includes nine fuzzy rules in FIG. 12. 

The ANFIS trained network structure is shown in FIG. 13. After training, the same twenty-one input data as taken for ANN 

are tested. The tested curve follows the experimental output curve in FIG. 14. The regression plot for the ANFIS prediction is 

shown in FIG. 15, where the coefficient of determination R2 is 0.99982 and best fit line as follows  

Y=(1.0)T+(0.00048)    (18) 

in which 𝑌 is the predicted output by ANFIS. 

Low error profile and high coefficient of determination in TABLE 6 indicate good prediction capability of ANFIS with the 

selected parameters given in TABLE 5. 

 

 

FIG. 10. gbell membership function of ANFIS. 
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FIG.11. Variation of MSE with number of membership functions. 

 

 

 

FIG. 12. Fuzzy rules. 

 

FIG. 13. ANFIS network structure. 
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FIG. 14. Comparison of ANFIS testing outputs with experimental outputs. 

 

 

FIG. 15. Correlation of training patterns in ANFIS. 

 

TABLE 5. Details of the training parameter in ANFIS. 

Training parameter Value 

Type of membership function (MF) gbell  

Number of MF 9 

Maximum number of epochs 100 

Error tolerance limit/goal 1e-03 

 

Optimization GA 

In GA method, the fitness and mean fitness are observed in the fitness plot from generation to generations. It is illustrated in 

FIG. 16 that the fitness value is converging from one generation to another generation. The optimal values of unknown 

parameters of Equation (13) i.e., 
1 2 3 4X ,X ,X  and X are obtained by minimizing the objective function given in Equation 14, 

and the developed CD –Re relation by GA is  
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1 2 30.9684 24.6367 0.00065 0.000045DlogC logRe logRe logRe                    (19) 

The coefficient of determination, R2 is found to be 0.998 as shown in FIG. 17. The fit line equation for GA from is  

Y=(1.0)T+(0.0018)                                                                                                                  (20)  

where 𝑌 is the predicted output from Equation 19. The goodness parameters for GA optimization is given in TABLE 6. Some 

random input values are tested, and it is observed that the outputs are following the trend line of experimental outputs. 

 

FIG. 16. Convergence pattern in GA. 

 

 

FIG. 17. Correlation of training patterns in GA optimization. 

Conclusion 

All the predictive models, which are used in this study, have predicted the drag coefficient with excellent accuracy. The 

relative study of the performance of all the models has revealed that ANFIS model and GA optimization are the best among 

all the selected models in terms of low error profile and high coefficient of regression. The third order regression model is 

predicted better in low Reynolds number range and deviated more from the experimental data in higher range of Re. Hence, 
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the cubic regression equation is not suggested. However, the other model i.e., ANN is also equally good, but continuous 

training is required to obtain the better predicted results. The comparison among the previously existed models and present 

models (only ANFIS and Equation (19) obtained from GA optimization) is given in TABLE 7. This table shows the goodness 

criteria of both ANFIS and Equation (19) are better than the other models. The predicted drag coefficients as function of 

Reynolds number and experimental data are given in FIG. 18. This work can help to predict the drag coefficient of the sphere 

at any flow condition. It is expected that this work can be extended to predict the drag coefficients of the other shaped 

particles. 

TABLE 6. Table of goodness of predictive models. 

Prediction model r S1 S2 R2 

ANN 2.10 1.03 0.64 0.99999 

ANFIS 1.22 0.1833 0.0354 0.99981 

GA Optimization  1.2542 0.2610 0.0510 0.99999 

Cubic polynomial regression 11.58 20.28 3.10 0.99881 

 

TABLE 7. Prediction error of different predictive model/equations. 

 

Reference Average relative 

error, r (%) 

Sum of squared 

relative errors, s1 

Sum of logarithmic 

deviations, s2 

Present study (ANFIS) 1.22 0.18 0.03 

Present study(GA), Equation (19) 1.25 0.26 0.0510 

Cheng (2009) 34.96 133.03 49.25 

Brown and 

Lawler (2003) 

23.66 83.33 9.90 

Clift and 

Gauvin (1970) 

7.35 7.43 1.46 

Turton and 

Levenspiel (19860 

7.28 7.07 1.39 

Flemmer and Banks (1986) 8.33 9.70 2.24 

Engelund and Hansen (1967) 87.10 1306.241 69.51 

Khan and Richardson (1987) 8.21 7.61 1.56 

 

 

 

FIG. 18. Comparison of predicted outputs vs. experimental measurements as function of input. 
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