Mathematical expression of 1D-nanodoping

Author(s): Pierre Hillion

1D -nanodoping is supposed to be a perturbation generated by a sequence of delta Dirac pulses satisfying the relation ð[sin(ð)] = ?n (n) where n is an integer. Applications are discussed first for acoustic waves in a jerky flow, and for a scalar Bessel beamin a flow with a nanodoped velocity then for TE, TM fields inside a perfect conductor cylindrical wave gui-de with a nanodoped permittivity. We finally consider electromagnetic flashes.

Share this