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ABSTRACT

1D -nanodoping is supposed to be a perturbation generated by a sequence
of deltaDirac pulsessatisfying therelation n[sin(n&)] = ? 5(&-n) wheren
isan integer. Applications are discussed first for acoustic wavesin ajerky
flow, and for ascalar Bessel beamin aflow with ananodoped velocity then
for TE, TM fieldsinside aperfect conductor cylindrical wave gui-dewith a
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nanodoped permittivity. We finally consider electromagnetic flashes.
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INTRODUCTION

Theblossoming of nanotechnol ogy duringtheselast
yeard¥ hasgenerated aflow of ex-perimenta and theo-
retical worksin different domains of physics, chemis-
try, biology with often important new results. Of par-
ticular interest istherealization of nanodoped materi-
a g% aswell astheanadysisof dow light propagation
in such structures>™. And the behaviour of thed ectro-
magnetic fields E, H in amaterial doped with nano
particles was previously analyzed!®.

We continue herethisinvestigation for acousticand
el ectromagnetic wave propagation in a2D material
nanodoped in adirection, the doping being considered
asredized by asequenceof perturbationsmadeof ddlta
Dirac pulsessatisfying therelation®
md[sin(ng)] =%, 8(E-n) (11)
nbeing aninteger in (—0.0). Thisdigtribution hasafirst
derivaivenull
OE3[sin(nE)] =0 (1.2)
Withy = sin(n&) so that dy = n(1-y?)¥? d& we get

OE3[sin(nk)] = m(1-y?) "2 (y)

which becomessincef(y) 8’(y) =—1(y) 8(y)
OEJ[sin(nE)] = my(1-y)—-23(y) (14
implying (1.2) using therelation f(x) 6(x—a) =f(a)
d(x—a).

Theapplicationsof Eq.(1.1) arediscussedfirst for
acousticwavesin ajerky flow, and for asca ar Bessel
beam in aflow with ananodoped vel ocity thenfor TE,
TM fiddsinsdeaper-fect conductor cylindrical wave
guidewith ananodoped permittivity. Wefinally con-
sider e ectromagnetic flashes. Each section isindepen-
dent and can be read apart.

(1.3)

ACOUSTICWAVESINA 2D-SUBSONIC
JERKY FLOW

Introduction

Thedescription of massflow requirestwo quanti-
ties: thedengty p(x,t) and thevel ocity v(x,t) fromwhich
the other properties of the flow are obtained. For a
fludinwhichviscosity and conductivity canbeneglected,
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supposnginadditiontheflow isentropic sothat thepres-
sion pisafunction of p only, the sound waves satisfy
the equationg*y

Dp/Dt +pV.v=0, D/Dt=9+vd,j=123

Dv/dt +a%pVp =0, a2=dp/dp (2.1

1. Assumingfirst afluid at rest with thedensity taking
theva uep, everywhere, wealow adisturbanceto occur
withavery small velocity and p = p +p, wherep, is
small. Then neglecting p,>and p, v, theequations (2.1)
reduceto theorder O(p,? p,v) to

op, +p,V.v=0

POV +a’p =0, &7=(dp/dp)p, (22)
the speed of sound 3, isthe same everywherein the
flow.

Eliminaingv from Egs.(2.2) givesthewaveequation
(A-8;%0)p, =0, A=82+97+d? (23)
Thedisturbed density p, propagatesasawavewiththe
velocity g,

2. Suppose now that the basisflow consists of steady
velocity U parallel tothex-axis, thenas-suming U, p,
constant and the flow isentropic the equations (2.2)
becomée® sincev=U +u

O0p, +Udp +pV.u=0

poU +pUdu+a’Vp =0 (2.9
Eliminating ufrom Egs.(2,4) givesthewaveequation
(A-a;%0)p, = ;7 (2U&°  p, + U?E,p,) (25)
We areinterested herein a2D-flow so that Eq.(2,5)
becomes

[(1-a,2U%0+ 08— a;%07p, =28, U & p, (2.6)
andwelook for thesolutionsof thisequationwhenU is
thejerky velocity defined in thenext section.

Jerky flow equation

Thejerky velocity isdefined by the periodic Dirac
distributioninwhich U jisconstant

U=U,3[sin(r&)] &=x/x, 2.7)
and, we supposetheflow subsonic
a, Uz <<1 (2.7a)

Now, Egs.(2.5), (2.6) arevalid for constant U, other-
wisefurther termsrequiring & U would exist correspond-
ingto V.U and (v.V)U for arbitrary U9, But thefirst
derivativeof thejerky velocity isnull accordingto (1.2)
oU=0 (28)
whichjudtifiesthevalidity of Eq.(2.6) withtheve ocity
2.7).

flano Soienoe and flano Teohnology

Remark: Usingthereationf(x) 6”(x—a) =f ”’(a) 6(x-
a) asmilar caculaion madeto prove(1.2) giveseasly
02U = -2 n2U.

Then, taking into account (2.7) and (2.7a), the
equation (2.6) becomes
[0,2+82-a;,%0p, =2a,2U, 3[sin(nt)] &, p,  (29)
Theexpression jerky flow comesfrom the series ex-
pansion (1.1) of the periodic Dirac distribution
U=U,Z 8(Ex—nm) (2.10)
nbeinganinteger in (—oo,00) sothat (2.10) representsa
sequenceof nano-pulsesleading theflow tomovejerkily.
Jerky flow solutions

Welook for the solutions of Eq.(2.9) intheform

p,(x,zt) = exp(iot +ik z) f(x) (2.12)
and substituting (2.11)into (2.9) gives

{62+k ?—b8[sin(n§)]0 }f(x)=0 (2.12)
inwhich

k?=aa"—k? b=2ima,?U, (2.129)

And, sincebisvery small, wemay writeto the 0(b2)
order

f(x) =f (X) + bf,(x) +0(b?) (213
Substituting (2.13) into (2.12) givesthetwo equations
@2+k2)f,(x)=0 a)

@2+k 2)f,(x) =d[sin(nE)]df,(x) b) (2.14)
We get from (2.14a) with theamplitudeA

f,(x) =Aexp(ik x) (2.15)
and subgtituting (2.15) into (2.14b) gives

024k 2)f(x) =ik A 8[sin(n&)] exp(ik x) (2.16)

Then, usingtheexpansion (2.10) of (2.7), theright hand
sideof Eq.(2.16) becomes

ik A 8[sin(ng)] exp(ik x) =B Z_8(x—nx ) exp(ik x) (2.17)
with

B =ink x,~'A (2.17a)
ance
8(&m — nm) = m—1x,8(x —nx,) (2.17b)

Thissuggeststolook for the solutionsof EQ.(2.16) in

theformwith constant amplitudesf, |
f,) =% f, 8(x-nx) (2.18)
Subgtituting (2.18) into (2.16) and taking into account
(2.17) give

(02+k2)f, 8(x—=nx) =B (x—nx) exp(ik nx,)

dnce

(2.19)
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8(x—nx,) exp(ik x) =8(x —nx ) exp(ik nx,) (2.19a)
But therelation ¢(x) 67 (x—a) =f ’(a) d(x—a) implies

f,,0,8(x—nx)=0 (2.190)
so that we get at oncefrom (2.19)
f,, =k B exp(ik nx) (2.20)

and (2.18) becomestaking into account (2.17a) and
(2.17b)
f,(x) =2 Kk 2B exp(ik nx ) 8(x—nx,)

=i kA Z exp(ik x) d(&r — nm) (2.21)
andfinaly accordingto (2.10)
f,(x) =i k A exp(ik X) 8[sin (n&)] (2.22)

Then substituting (2.15) and (2.22) into (2.13) gives
the O(b?) approximation
f(x) =A exp(ik x) {1+ibk ~ 8[sin (n&)]} (2.23)
and accordingto (2.11) and (2.23) withk > +k =g —
2007
p,(x.zt) =Aexp(iot +ik z+ik X)

{1+ibk ~18[sin (n&)]} (2.24)
So, inajerky flow, thedisturbed density p, appearsas
an harmoni ¢ planewave nanodoped by Dirac pulsesat
regular intervals.
Discussion

Theterm jerky flow isgenerally attached to the
Portevin-Le Chatelier effect, discoveredin 1923, and
corresponding to akind of plasticinstability observed
inmany dilutealloysat cer-tain ranges of strain and
temperature*? and, very often escorted by acoustic
emissiong®.

Thejerky flow introduced in thiswork isat half
waly between asteady flow and achaoticflow : on one
hand, thisflow isnot steady state sincetherelations
oU=0,0>U=0,provedin Sec.2, canbeeasily gen-
eralizedtoo *'U=0,0*U=0,p=0,1,2... On the
other hand, it may hardly be considered aschaotic since
itsdisturbances, dueto the periodic Dirac distri-bution,
regularly scattered dong ox, have an exceedingly thin
thickness.. And, inthissitua:tion, theamplitudesof sound
waves, described by harmonic planewaves, suffer ac-
cordingto (2.23), from the same staccatto disturbances
asthejerky flow.

We may imagine ajerky flow aswater flowing
down astarcasewith alow velocity to avoid turbu-
lences™.
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BESSEL SCALARBEAM INAFLOWWITHA
NANODOPED VELOCITY

Introduction

Weareinterested in aBessdl scalar beam vy (r,z,t),
cylindrical around oz, solution of thewa-ve equation
[, + Ur)o.+ 07— n*(2)0w(r,zt) =0 (31
inwhich n-1(z) isaveocity function of z, and y(r,z,t)
anacoudticfield. Inparticular for n=n = constant, this
equation hasthe solutionwith the parametersk, o,
y(r,z,t) = J (kr) exp[—in, (a—B)z] exp[i(a+P)t] 32
J,isthe Bessdl function of thefirst kind of order zero
and
k2 = 4n 2af (3.2a)
Then, when nisnot constant, welook for the solution
of Eq.(3.1) intheform
y(r.zt) = Jy(kr) exp[i(a+B)t] $(z) (33
and, subdtituting (3.3) int (3.1) givesthedifferentia equa
tion satisfied by ¢(2)
$” (@) H(a+B)’n*(2) -k* $(2) =0 (34)
Suppose how that n?(z), depending on two constants
nS N2 <<ng? hastheO(n, ) approxi-mationinwhich

0’ 1

f(z) isabounded function

n¥(z) =n2+n2f(z) +0(n% (35)
so that the equation (3.4) becomes

7@+ v +7,(2)] $(2) =0 (36)
with, takinginto account (3.2a)

Y,o = Ny (a+B)*- k? = n¥o—P)?,

1,%(2) = (0+B)*f(2) (3.69)

Thisresult suggeststo look for the solutions of Eq.(3.6)
intheform

() =¢,(2) +n,¢(2) + O(n,?) (3.7
and substituting (3.7) into (3.6) givesthetwo equations
$,”@) +7,°9,(2) =0 (3.89)
4,” @ +7,6,(2) =—7,%(2) $,(2) (3.80)
Theequation (3.83) hasthesolutionsinwhichA, B are
arbitrary amplitudes

$,(2) =A exp(iy,2) + B exp(-iy2) (39
So, we are | eft with the nonhomogeneous equation
(3.8b) to be solved when f(z) is a sequence of delta
Dirac pulses. And, to makeca culationseasier to check,
wegive, intermsof length L and time T, adimensional
anayssof themain parameters, usingthe conventiona
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notation [E] for thedimension of E.
[n] =[ny] =[n]=L-1T; [a] =[B] =T-1;

[KI=L-1; [y] =L-1[y] =T-1; [f]=L°T° (3.10)

Bessel beam in aflow with nanodoped velocity

To solve EQ.(3.8b), we look for its solutions in the
form1
4,2 =c, (2w, (2 +c,(Dw,(2) 1)
wherew,(2) = exp(iy,2), W,(2) = exp(-iy,z) are solu-
tionsof thehomogeneousequation
0, @+ /$,(2)=0 (3.11a)
Theni* taking into account theright hand side of (3.8b)
thederivativesc’, (2) of ¢, (2) are
¢, =142 ¢, (2 W (2) [W,D W (2) - W’ (D) W,(2)] ™

= (iv,A2) 12y,) ,(2) exp(-iv,2) (3.12a)
andsmilarly

C,(2 ==1,(2 ¢, w,(2) [, () W,(2) -W’,(2) W,(2)] ™

== (7,2 12y, ¢ (2) exp(iv,2) (3.12b)
Subgtituting (3.9) into (3.12a,b) gives
¢,(2) = (iv,"(2) 12y,) [A + B exp(-2iy,2)]
C(2) =—(iy,A(2) 12y,)) [A exp(2iy,2) + B] (3.13)

We now supposethat f(z) isasequenceof deltapulses
Zv 8(z/z;~v) where v isan integer in (—oo, ), & the
Dirac distribution and z, aconstant.

Then, accordingto (3.68) andinagreement with (3.10)

Y,2(2) = (0+B)*Z, 8(z/z;~v) (3.19)
andwriting
=2 v, c,2=Z.c,v2) (3.15)
weget from (3.13) and (3.14)
¢, (2) = i[(+B)2/2y,] 8(zIZ~v)

[A +B exp(-2iy,2)] (3.16a)

and, usingthe properties of the Dirac distribution
¢ (2 =iz[(a+p)*/2y]

[A + B exp(-2iy,vz,)] 8(z—vz) (3.16b)
andsmilarly

¢, (@ = il(a+B)* /2y ] 8(z/zv)

[A exp(2iy,2) +B] (3.17a)
¢,(2) = iz[(a+B)?/2y]

[A exp(2iy,vz,)+B] 8(z—vz) (3.17b)
sothat

c(2=Z c (2, c(2=Z% ¢, (2 (3.18)

with accordingto (3.16b), (3.17b)

¢, ,(?) = iz (0+B)/2y]
[A + B exp(=2iy,vz,)] U(z-vz)

flano Soienoe and flano Teohnology

¢,,(2) = =iz (o) /2y
[A exp(2iy,vz,)+B] U(z-vz)

inwhich U(z-vz,) istheunit step function.

Subdtituting (3.19) into (3.18) and taking (3.11) into
account achievesto determine ¢, (2).

Thesecaculationsareforma sincenathingisknown
on the convergenceof the series(3.18) and thisunsat-
isfactory situation comesfrom the definition (3.14) of
v,%(2) by aninfinite se-ries. But, accordingto therela-
tion (1.1) rewritten below for convenience

(3.19)

nd[sin(nz/z)] =Z 8(z/z;n) (3.20)
weget
7,%(2) = (a+B)* [sin(nz/z,)] (3.21)

Then, using (3.16a), (3.174) instead (3.16b), (3.17b),
thefunctionc’, ,(z) areno more defined by the series
(3.15) but become

,(2) = inf(0+B)?/2y,] 8[sin(nz/z)]

[A +B exp(-2iy,2)] (3.22a)
C’(2) = in[(a+B)*/2y,] §[sin(nz/z )]
[A exp(2iy,2) +B] (3.22b)

Thepriceto pay isto paformtheintegration of (22ab).
Let usfor instance consider thefirst term of (3.229)

[c,(2)], = inA[(a+B)*/2y] 8[sin(nz/z)] (3.23)
withtheintegration

[c,(2)], =imA[(a+B)*/2y,] Iozﬁ[si n(ns'z,)] ds (3.24)
L et usintroducethefunctions

u=[sin(ns/z,), v=[sin(nz/z) (3.25)
so that

du=n/z,(1-u?"*dsa), 9,=n/z, (1-v?)"?0,b) (3.26)

Then, using (3.264) theintegrd (3.24) becomes
[c,(2)], = inAz v [(a+B)2/2y,] 1,(v) (3.27)
1,(v) = ¥8(u) (1~u?*2du (3.27a)
taking into acccount (3.26b) we get at onced,[c,(2)],
=[c’,(2)], whileaccordingto (3.27d)

I,(v) = (=)™ U(v) + IOVU(u) (1-u?~Y2udu (3.28)
theintegrd in (3.28) needsanumerica approximation.
Theintegration of the second term of (3.22a)

[¢,(2)], = inB[(a+B)*/2y]

d[sin(nz/z,)] exp(-iy,z) (3.29)
gves

[c,(2)], = inB[(0+B)?/2y,]

[ #8[sin(ns/z)] exp(-iy,9)ds (3.30)

and, with (3.25), (3.26a) thisintegral becomes
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[c,(2)],=inBz/v[(a+p)*/2y ] 1 (V) (3.32)
1,(v) =] ¥8(u) ®(u) du,

®(u) =(1-u?)™ exp[(-iy,z/m) arcsinu] (3.31a)
and

1,(v) = U(v) @(v) [ vU(u) @’ (u) du (3.32)

Theintegra in(3.32) requiresa soanumerica approxi-
mation. We have, of courseasimilar result for theex-
pression (3.27b) of c,’(z).
Discussion

To managethe scalar wave equation with avari-
ablevelocity v(z), we had to assumethat n?(z) [= v—
2(2)] hasthe approximation 0(n,*) and alsoto general -
izethisapproximationto the solutionsof Eq.(3.4) sup-
posingin particular f(z) bounded. Thetechniqueusedto
solvetheinhomogeneousdifferentia equation (3.8b) is
generd, theonly difficultiesmay comefromtheintegra-
tion of thecoefficientsc’, (z), anumerical integration
could beneeded (whichisnot thecaseif f(z) isatrigono-
metricfunction).

The Besseal solution (3.2) is the Durnin scalar
nondiffracting beam9,

TE,TM FIELDSINANANODOPED
WAVE GUIDE

Maxwell equations

We consider aperfect conductor, cylindrical wave-
guideof z-axisand radiusa, endowed with thenanodoped
permittivity inwhichmisaninteger in(—oo,00)
g2 =¢,+nzZ 8z-mz), O=r=a 4.
g, M areconstant, & the Dirac distribution and accord-
ingto(1.1) and (1.2)
0£(2)=0 (4.1a)
Wework withthecylindrical coordinatesr, 6, z. The
fieldsdo not depend on 6 and the permeability p is con-
Sant.

Then, theMaxwell curl equationsard’

—0E0 + poH =0 a)
(0,+Ur)E0+poH =0 b
0,E —0E, +poHO =0 C) 4.2
0HO+¢(2)0F =0 a)
(0,+Ur)HO —&(2)0E,=0 b)
0,H —0H, —£(20E0=0 C) 4.3

Theseequationsdivideintotwo sets: TE (H , H,, E6)

—= Ful] Paper

andTM (E, E,, HO) fields.

Fromadimensiond andysisviewpoint, whichisin-
teresting to foresee some results and to avoid some
bugs, wehave, using the conventiona notation [F] for
thedimensionof F
[E]=ML?T2Q™, [D] =L~Q,

[e] =[n] =M~'L=T?Q% [H] =T~'Q,

[B]=MLT~'Q? [n]=MLQ? [3(2)] =L~ (4.4)
inwhich L, M, T, Q denote length, mass, time and
charge. Theseresultscomefrom the Strat-ton dimen-
sional analysis*® by changing Qinto LQinthedimen-
sionsof thefield densities since one hashereto deal
with a2D-space.

Now, substituting (4.2a,b)} intothetimederivative
of (4.3c) givesthewaveequationfulfilled by EO
[02+8,(@+1/r)—n%2) 8] EO =0 (45)
Substituting similarly (4.3a,b) into (4.2c) and using
(4.18) showsthat HO satisfiesa so thewave Eq.(4.5).

So, weareleft with thisequationto be solved. Let
usremark that for ascalar field, theterm (0 +1/r)in
(4.5) ischangedinto (0 +1/r)0. at theorigin of some
confusion®,

Boundary conditions

Welook for the solutions of Eq.(4.5) inthefollow-
ingformwith arbitrary amplitudesA , A,
{Eq Het ={A, Agtw(r.2) (4.6)
y(r,2) =J,(kr) ¢(z) exp(iemt) (4.6a)
J, isthe Bessel function of thefirst kind of order one
and ¢(z) afunction to be determined. From adimen-
sond viewpoint :
[A]=MLT2Q?, [A]=L"T7Q, [y]=L (4.60)
Now, the solutions must satisfy the boundary condi-
tionsonthe perfect conductor surfacer =a

TE:[0H (2] =0, TM:[E(r,2)]_=0 @.7)
But, accordingto (4.2b), (4.3b)

TE : ieuH,=—(0,+1/r)EO a),

T™: ine(2)E, = (8+1/r)HO b) (4.8)

Then, substituting (4.6) into (4.8a,b), performing the
0 -derivativeof (4.8a) and usingtherelaions

@+1/r) J (kr) = k J(kr) a)

0.0 +1/r) J(kr)y==k?J (kr) b (4.9)
one checksat oncethat the boundary conditions (4.7)
arefulfilledif
TE:ka=p,

TM:ka=q (4.10)
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inwhichp, g arethelthrootsof J (x) =0and J(x) =
O respectively.

Finaly, substituting (4.6a) into thewave equation
(4.5) andusing (4.9b) givethedifferentia equation sat-
isfied by ¢(z) wheren?(z) = ue(2)
¢’ —[k?*—w’n?(2)] $=0 (4.12)
whichisaMathieu-like equation that we have now
tosolve,

Mathieu equation

Let usstart withthe smplerefractiveindex

n*(2) = pe, + unz,8(z-mz) 4.12)
transforming Eq.(4.11) into

07— [A2—a?8(z-mz,)]$ =0 (4.13)
with

o’=’punz, a), A=k’-o’ne, b (4.19
Welook for thesolution of (4.13intheform

0, (2) =exp[M(z-mz)] U(z-mz,) (4.15)

inwhich U(z) istheunit step functionwithU(0) =1 s0
that ¢_(mz) =1and

8(z-mz) ¢, (2) =8(z—mz) (4.153)
Now, asmplecaculation gives
6,72, =Aexp[A(z—mz)] §(z—mz,)

=A8(z-mz) (4.16)

Takinginto account (4.14a,b) the comparison of (4.13)
and (4.16) gives

A =—-0’=—-o’unz, (4.17)
supplyingtheequation

o'yn’z? + o’pe, — k*=0 (4.18)
withthesolution

@ = [-¢, + (8, 44k™2. )" (2umz)" (4.19)

inwhich according to (4.10) k=p/aork=g/a;1=
1,23...

Wenow consider the permittivity
£(2)=¢,+nz2 &z-mz), m=0,12... (4.20)
whichis(4.1) limitedtothepostiveintegers. Then, the
equation (4.11) becomeswith o2, A2given by (4.14)
¢’ —[A*—a?Z_8(z—mz)] ¢=0 (4.22)
Let uslook for thesolutionsof (4.21) intheform
0(2)=% ¢, (2)j=012...,
62 = el @-2)] U(z-i2) (4.2
Substituting (4.22) into (4.21) giveswithj =0,1,2...,
m=0,1,2...

flano Soienoe and flano Teohnology

Z[6,”@-A¢,(2) ta 2E (z=mz) ¢,(2)] =0 (4.23)
inwhich
a’=o’pmz, 8, A?=K-o’pg, b (4239)
with accordingto (4.16)
0 @124 =1 el (z-i2)] 8(z-i2)

=A (z2) (4.24)

Taking into account (4.24), Eq.(4.23) becomes

Z A 8(z-iz) +Z 2 a’8(z-mz) ¢,(2) =0 (4.25)
Exchanging j and minthe second term ontheleft hand
sideof (4.25) gives

Z8(zjz) M +Z o ¢, (2)] =0 (4.26)
implying

A+E @ 29, (2)]=0 (4.27)
inwhich acccordingto (4.22)

¢,,(z)1 =explA, (-m)z] U[(—-m)z)] (4.272)

Thisexpressonisnull form>jand ¢ _(jz,) =exp[A, (-
m)z ] form=j. Usingthisresultandmakingm=j, j—1,
j—2... therelation (4.27) becomes
A +a?+oa-17exp(d-12z) +
a—2expA—,z) +...=0 (4.28)
giving A+ o2 =0, A+ o +a 2 exp(r z) =0, ...
Theserelations determinethe frequency bands !
inwhichthesolutions(4.22) exist.
Then, substituting (4.22) into (4.6a) givesthecom-
ponentsED, HO, of theTEand TM fields
E0 (rzt)=Z A, J,(kr) ¢ () exp(imt) )
HO (rzt) =% A, J(kr) ¢ (2) exp(imt) D) (4.29)
Wehavedtilltoget{H ,H,} and{E, E,}. Subgtituting
(4.299) into (4.2a,b) givesthe compo-nents{H , H,}
of theTEfield
iopH =2 A, J(kr) 84 (2) exp(iot)
iopH,=—kZA_ I (k) ¢ (2) expliot) (4.30)
Similarly, substituting ((4.29b) into (4.3a,b), we get
ime(z)H =-% A, J(kr) 0 (2) exp(iat)

ine@ H,=Z A, J (k)¢ (2 exp(iat) (4.31)

Discussion

Thewaveguideanalyzedin thiswork hasapar-
ticular structure: first, theinner permittivityforO=r=a
iIsnanodoped according totherelation (4.20) whichis
(4.1) limited to the posi-tiveintegers. thegenera case
hastill tobe solved. Second, itsinterior ispartitionned

by aset of virtual diskswith radiusa, dielectric con-
stant ) and exceedingly thin thicknesssimul ating delta
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digtributions, regularly distributed dongthez axis. This
brief description of theinner wave guide suggeststhat
suchagructurecould beexperimentaly redized at | east
goproximately.

Onemay intuitively imaginethat an e ectromagnetic
wave propagating insidethe partitio-ned wave guide
will vibratea ong 0z acccording to the partitioning peri-
odicity. Thiswould explainwhy ¢(z) satisfiesaMathieu
equation, introduced by EmileMathieu, alongtimeago,
to analyzethevibrations of elliptic membranes. it is
known?! that the standard M athi eu equation{ similar
to (4.21) with 5(z—z,) changed into 2 cog b(z-z )] } has
aninfinity of periodicsolutions,

Then, supposethat one could realize ananodoped
waveguide, asdescribed above, of length L betweenz
=0and z =L, it should be possible to check the
behaviour of TE, TM fiedsobtained by illuminating the
z = 0 face with an harmonic plane wave, its electric
fieddbeingpardld or perpendicular tothez axisand to
compare experiment and theory.

ELECTROMAGNETIC NANO FLASHES

Introduction

Changing £ into T =t/t, Eq.(1.1) becomes
ad[sin(nt)] ==, 8(x-n) (5.1)
describing asequenceof Diracpulsesintimewhichare
identifiedwithlight flashes.

Now, inahomogeneousisotropic medumwith B =
uH, D =¢E, theMaxwel| equationswith cylindrical co-

ordinates, r, 0, zare, for fieldsnot dependingon 6
—O0F0+poH =0 a)

(6,+Ur)E0 + poH, =0 b)

0,E,—0E,+poHO =0 0)

(0, +1r)H +0H =0 d (5.2
8HO +€dE =0 3
(0.+1/r)HB—€dE,=0 b)

0,H—-0H g0E0=0 0

(0.+Ur)E +0E,=0 d (5.3)

Theseequationsdivideintotwo sets: TE (H , H_, EO)
andTM (E, E,, HO) fields. Weareinte-rested into the
flashing TE, TM planewaveswith theflash functions
(5.1

TE, TM flashes
We haveaccordingto (1.1)

—= Ful] Paper
d/de§[sin(nt)] =0 (5.9

Then, welook for the solutions of Eq.(5.2), (5.3) inthe
form

{E(r, zt), H(r, z, )} ={E*(r, 2), H*(r, 2)} 8[sin(nt)]  (5.5)
so that accordingto (5.4)
O{E(r,zt),H(r,z,1)} =0 (5.6)

Substituting (5.5) into (5.2a,b) and (5.3c), taking into
account (5.6) give
EO*(r,2)=0,0H*(r,2)—=0.H *(r, 2) (5.7
with the solution satisfying the divergence equation
(5.2d) :
H *(r,2) =H exp(ikz) J (kr),
H,*(r, 2) =—i H exp(ikz) J (kr) (5.8
H isan arbitrary amplitude and k an arbitrary wave
vector.

Wehaveasmilar result from (5.3a,b,d) and (5.2¢)
forHO,E,E,
HO*(r, 2) =0, E *(r, 2) = E exp(ikz) J,(kr),
E*(r,2) =—i E exp(ikz) J(kr) (5.9)
so that taking into account (5.6), (5.7), (5.9) and t =t/
t, wefindly get
EO(r,z,t) =HO(r,z,t)=0
{E.(r.zt), H,(r, z,t)} ={E, H}exp(ik2)

J,(kr) 8[sin(nt/t)]
{E,(r.zt),H (r, z,t)} =i {E, H}exp(ik2)
J,(kr) 8[sin(xt/t )] (5.10)

k hasnot the samevaluein TE and TM modes.

These solutions represent plane wavesflashing at
regulartimesnt .
Discussion

The TEand TM flashing waveshasacharacteris-
ticfeature : the 6-component of the elec-tric (mag-
netic) fieldisnull for TE (TM) modes. So, reduced to
ther, zcomponents of electric and magnetic fields,
they arefully confined inther, z-plane. Asaconse-
guence, no relation exists between thecircular fre-
guency o and the wave vector k which may be ob-
tained from boundary conditions. Suppose for in-
stance, that these flashing waves propagateinside a
perfect conductor cylindrical waveguide of z-axisand
radius a. The boundary conditions on the el ectromag-
neticfieldare

TE:[@H],.,=0, TM:[E] _. =0
that isaccordingto (5.8), (5.9)

(5.11)
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TE:J (ka)=0, T™ :J (ka)=0 (5.12)
implying
TE:ka=p, TM :ka=q, (5.13)

inwhichp, q arethel throotsof J (x) =0and J,(x) =0.
Theperiodic Dirac distribution (5.1) hasasmple
frequency representation ®(w)
®(w) = Ut | ~exp(iot) 3[sin(at/t,)] dt
Introducingthevariable T = sin(xt/t ) such as
dT =a/t 1-T?)"2dt, t = (=1"t /m arcsinT + nt, (5.15)
inwhichnisaninteger in (—oo,00) the Fourier transform
(5.14) becomes

(5.14)

() =% D (@) (5.16)
® (o) = Ut, ]~ explio

[(=1Mt/maresinT +nt ] §(T) dT (5.16a)
thetis
@ (o) = 1/n exp(iont ) (5.17)
and, substituting (5.17) into (5.16) gives
®(w) =3 1/mexp(iont ) = 1/n (1 —exp(iot )™ (5.18)

On the other hand, substituting the series (5.1) into
(5.14) give

®(0) = Un[_*% exp(iot) 8(t—nt ) dt (5.19)
in agreement with (5.18) if the seriesin (5,19) can be
integrated term by term, which justifies, aposteriori,
theexchange of integration and summation.

CONCLUSIONS

That 1D-nanodoping may be described by ase-
quenceof deltaDirac pulsesisrather naturd . Inadoped
material, one of its properties, mechanical, chemical,
electric, magnetic. .. is per-turbed by the adjunction of
asubstanceto improvethe performancesof thisprop-
erty. Nano-doping interveneswhen the dimension of
thissubstanceismuch moresmaller thanthedimension
of themediuminwhichthisproperty hasto beimproved.
In 1D-nanodoping, theinjected substance may be con-
sidered asadimensionlessdot, correctly represented
by aDirac distri-bution.

Once accepted this representation of 1D-
nanodoping, amathematical simulation of thissitu-
ation, based on the conventional equationsof mechan-
ics, acoustics, € ectromagnetism hasto be performed
to forsee the consequences of this nanodoping. To
estimate the performancesof 1D-nanomaterials, itis

flano Soienoe and flano Teohnology

first necessary to get manageable anaytical solutions
of thissmulaion

Asshown here, thisresult isreached a theexpense
of sometimes rather severe approxima-tions which
could beimproved later by numerical smulations, so
ableto tacklemore elaborate situations.

We may imagine 1D-nanodoped material wave
guidedtoatarget.

Eq.(1.1) isaparticular case of therdation™

3[¢()] =%, 8(r—) Iz )]
inwhichthet ’s the zeroes of ¢(t).

When ¢v(t) = Iv(t) where v istheBessel function
of thefirstkind of order v withthezeroesjv, n=1.2....
weget from (6.1)

8[J, (W] =%, 8(j,,) N,G,, ) a)
8[J,®] =% 8(r-j,) NG, )Nv=21D (6.2
For instance, proceeding asin Sec.(5,2), we get with
(6.28)
EO(r,z,t) =HO(r,z,t) =0
{E,(r,zt),H (r,z,t)} ={E, H}exp(ikz) J,(kr) 88[J (7)]
{E(r,z}t),H (r,z,1)} =i {E, H}exp(ik2)

J,(kr) 88[J (v)] (6.3)
These sol utionsrepresent planewavesflashing at times
t=jtn=12..

Therdation (1.1) supplies 1D-nanodoping made of
ddtaDiracpulsesdongadirection, ltsgenerdization
md[sin(mx/x )] S[sin(myly )] =Xy, X,  8(x—mx))

S(y-ny,) (6.4)
would givea2D-nanodoping with deltaDirac pulsesat
theverticesof arectangular grid.

Using therdlation® §(x)dy = 5(r) /zr, r = (x?+y?)*?,
theright hand side of (6.4) becomesxy, X, or  /
ar,  Withr  =[(x=mx.)? + (y—ny,)’]".

Thisresult could be gppliedto flashesinthe(x, ct)
plane and generalized to 3D-nanodoping.

(6.1)
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