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1D -nanodoping is supposed to be a perturbation generated by a sequence
of delta Dirac pulses satisfying the relation ð[sin(ð)] = ?

n
 (n) where n

is an integer. Applications are discussed first for acoustic waves in a jerky
flow, and for a scalar Bessel beam in a flow with a nanodoped velocity then
for TE, TM fields inside a perfect conductor cylindrical wave gui-de with a
nanodoped permittivity. We finally consider electromagnetic flashes.
 2010 Trade Science Inc. - INDIA

INTRODUCTION

The blossoming of nanotechnology during these last
years[1] has generated a flow of ex-perimental and theo-
retical works in different domains of physics, chemis-
try, biology with often important new results. Of par-
ticular interest is the realization of nanodoped materi-
als[2-4] as well as the analysis of slow light propagation
in such structures[5-7]. And the behaviour of the electro-
magnetic fields E, H in a material doped with nano
particles was previously analyzed[8].

We continue here this investigation for acoustic and
electromagnetic wave propagation in a 2D material
nanodoped in a direction, the doping being considered
as realized by a sequence of perturbations made of delta
Dirac pulses satisfying the relation[9]

[sin()] = 
n
 (n) (1.1)

n being an integer in (. This distribution has a first
derivative null
[sin(ð)] = 0 (1.2)

With y = sin(ð) so that dy = ð(1y2)1/2 d we get

[sin(ð)] = ð(1y2)1/2�(y) (1.3)

which becomes since f(y) �(y) =  f�(y) (y)
[sin(ð)] = ðy(1y2)1/2(y) (1.4)

implying (1.2) using the relation f(x) (xa) = f(a)
(xa).

The applications of Eq.(1.1) are discussed first for
acoustic waves in a jerky flow, and for a scalar Bessel
beam in a flow with a nanodoped velocity then for TE,
TM fields inside a per-fect conductor cylindrical wave
guide with a nanodoped permittivity. We finally con-
sider electromagnetic flashes. Each section is indepen-
dent and can be read apart.

ACOUSTIC WAVES IN A 2D-SUBSONIC
JERKY FLOW

Introduction

The description of mass flow requires two quanti-
ties: the density (x,t) and the velocity v(x,t) from which
the other properties of the flow are obtained. For a
fluid in which viscosity and conductivity can be neglected,
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supposing in addition the flow isentropic so that the pres-
sion p is a function of  only, the sound waves satisfy
the equations[10,11]

D/Dt + v = 0, D/Dt = 
t 
+ v

j


j
, j = 1,2,3

Dv/dt + a2/ = 0, a2 = dp/d (2.1)

1. Assuming first a fluid at rest with the density taking
the value 

0
 everywhere, we allow a disturbance to occur

with a very small velocity and  = 
0
+

1
 where 

1
 is

small. Then neglecting 
1
2 and 

1
v, the equations (2.1)

reduce to the order 0(
1
2, 

1
v) to


t


1


0
v = 0


0


t
v + a

0
2 

1
 = 0, a

0
2 = (dp/d)

0
(2.2)

the speed of sound a
0
 is the same everywhere in the

flow.
Eliminating v from Eqs.(2.2) gives the wave equation

( a
0
2

t
2)

1
 = 0,  = 

x
2 +

y
2 +

z
2 (2.3)

The disturbed density 
1
 propagates as a wave with the

velocity a
0
.

2. Suppose now that the basis flow consists of steady
velocity U parallel to the x-axis, then as-suming U, 

0

constant and the flow isentropic the equations (2.2)
become[10] since v = U + u


t


1
 U

x


1
+

0
u = 0


0


t
U + 

0
U

t
u + a

0
2 

1
 = 0 (2.4)

Eliminating u from Eqs.(2,4) gives the wave equation
( a

0
2

t
2)

1
 = a

0
2 (2U2

x,t 


1
 + U22

x 


1
) (2.5)

We are interested here in a 2D-flow so that Eq.(2,5)
becomes
[(1 a

0
2U2)

x
2 

z
2 a

0
2

t
2]

1
 = 2 a

0
2 U 2

x,t 


1
(2.6)

and we look for the solutions of this equation when U is
the jerky velocity defined in the next section.

Jerky flow equation

The jerky velocity is defined by the periodic Dirac
distribution in which U

0
 is constant

U = U
0
 [sin(ð)]  = x/x

0
(2.7)

and, we suppose the flow subsonic
a

0
2U

0
2 << 1 (2.7a)

Now, Eqs.(2.5), (2.6) are valid for constant U, other-
wise further terms requiring 

x
U would exist correspond-

ing to .U and (v.)U for arbitrary U[10]. But the first
derivative of the jerky velocity is null according to (1.2)


x
U = 0 (2.8)

which justifies the validity of Eq.(2.6) with the velocity
(2.7).

Remark: Using the relation f(x) ��(xa) = f ��(a) (x-
a) a similar calculation made to prove (1.2) gives easily
2U = 2 ð2 U.

Then, taking into account (2.7) and (2.7a), the
equation (2.6) becomes
[

x
2 

z
2 a

0
2

t
2]

1
 = 2 a

0
2 U

0
 [sin(ð)] 2

x,t 


1
(2.9)

The expression jerky flow comes from the series ex-
pansion (1.1) of the periodic Dirac distribution
U = U

0
 

n
( n (2.10)

n being an integer in ( so that (2.10) represents a
sequence of nano-pulses leading the flow to move jerkily.

Jerky flow solutions

We look for the solutions of Eq.(2.9) in the form


1
(x,z,t) = exp(it + ik

z
z) f(x) (2.11)

and substituting (2.11)into (2.9) gives
{

x
2 k

x
2 b [sin(ð)]

x
}f(x) = 0 (2.12)

in which
k

x
2 = a

0
22k

z
2, b = 2i a

0
2 U

0
(2.12a)

And, since b is very small, we may write to the 0(b)
order
f(x) = f

1
(x) + b f

2
(x) + 0(b2) (2.13)

Substituting (2.13) into (2.12) gives the two equations
(

x
2 k

x
2)f

1
(x) = 0 a)

(
x

2 k
x
2)f

2
(x) = [sin(ð)]

x
f

1
(x) b) (2.14)

We get from (2.14a) with the amplitude A
f

1
(x) = A exp(ik

x
x) (2.15)

and substituting (2.15) into (2.14b) gives
(

x
2 k

x
2)f

2
(x) = ik

x
A [sin(ð)] exp(ik

x
x) (2.16)

Then, using the expansion (2.10) of (2.7), the right hand
side of Eq.(2.16) becomes
ik

x
A [sin(ð)] exp(ik

x
x) = B 

n
 (x nx

0
) exp(ik

x
x) (2.17)

with
B = iðk

x
x

0 
1A (2.17a)

since
( n = ðx

0
 (x nx

0
) (2.17b)

This suggests to look for the solutions of Eq.(2.16) in
the form with constant amplitudes f

2,n

f
2
(x) = 

n
 f

2,n
(x nx

0
) (2.18)

Substituting (2.18) into (2.16) and taking into account
(2.17) give
(

x
2 k

x
2)f

2,n
 (x nx

0
) = B (x nx

0
) exp(ik

x
nx

0
) (2.19)

since
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(x nx
0
) exp(ik

x
x) = (x nx

0
) exp(ik

x
nx

0
) (2.19a)

But the relation (x) ��(xa) = f ��(a) (xa) implies
f

2,n 


x
2(x nx

0
) = 0 (2.19b)

so that we get at once from (2.19)
f

2,n
= k

x
2B exp(ik

x
nx

0
) (2.20)

and (2.18) becomes taking into account (2.17a) and
(2.17b)
f

2
(x) = 

n
 k

x
2B exp(ik

x
nx

0
) (x nx

0
)

= i k
x
1A 

n
 exp(ik

x
x) n (2.21)

and finally according to (2.10)
f

2
(x) = i k

x
1A exp(ik

x
x) [sin (ð] (2.22)

Then substituting (2.15) and (2.22) into (2.13) gives
the 0(b2) approximation
f(x) = A exp(ik

x
x) {1+ ib k

x
1 [sin (ð]} (2.23)

and according to (2.11) and (2.23) with k
x
2 + k

z
2 = a

0 


2


1
(x,z,t) = A exp(it + ik

z
z + ik

x
x)

{1+ ib k
x
1 [sin (ð]} (2.24)

So, in a jerky flow, the disturbed density 
1
 appears as

an harmonic plane wave nanodoped by Dirac pulses at
regular intervalls.

Discussion

The term jerky flow is generally attached to the
Portevin-Le Chatelier effect, discovered in 1923, and
corresponding to a kind of plastic instability observed
in many dilute alloys at cer-tain ranges of strain and
temperature[12] and, very often escorted by acoustic
emissions[13].

The jerky flow introduced in this work is at half
way between a steady flow and a chaotic flow : on one

hand, this flow is not steady state since the relations


x
U = 0, 2

x
U  0, proved in Sec.2, can be easily gen-

eralized to 
x
2p+1U = 0, 

x
2pU  0, p = 0,1,2� On the

other hand, it may hardly be considered as chaotic since
its disturbances, due to the periodic Dirac distri-bution,
regularly scattered along ox, have an exceedingly thin
thickness.. And, in this situa-tion, the amplitudes of sound
waves, described by harmonic plane waves, suffer ac-
cording to (2.23), from the same staccatto disturbances
as the jerky flow.

We may imagine a jerky flow as water flowing
down a starcase with a low velocity to avoid turbu-
lences[14].

BESSEL SCALAR BEAM IN A FLOW WITH A
NANODOPED VELOCITY

Introduction

We are interested in a Bessel scalar beam (r,z,t),
cylindrical around oz, solution of the wa-ve equation
[(

r
 1/r)

r 


z
2  n2(z)

t
2](r,z,t) = 0 (3.1)

in which n(z) is a velocity function of z, and (r,z,t)
an acoustic field. In particular for n = n

0
 = constant, this

equation has the solution with the parameters k, 
(r,z,t) = J

0
(kr) exp[in

0
 (z] exp[i(t] (3.2)

J
0
 is the Bessel function of the first kind of order zero

and
k2 = 4n

0
2 (3.2a)

Then, when n is not constant, we look for the solution
of Eq.(3.1) in the form
(r,z,t) = J

0
(kr) exp[i(t] (z) (3.3)

and, substituting (3.3) int (3.1) gives the differential equa-
tion satisfied by (z)
��(z) +[(2n2 (z)  k2] (z) = 0 (3.4)

Suppose now that n2(z), depending on two constants
n

0
2, n

1
2 << n

0
2, has the 0(n

1
4) approxi-mation in which

f(z) is a bounded function
n2(z) = n

0
2 + n

1
2 f(z) +0(n4) (3.5)

so that the equation (3.4) becomes
��(z) + [

0
2 

1
2(z)] (z) = 0 (3.6)

with, taking into account (3.2a)


0
2= n

0
2(2 k2 = n

0
2()2,


1
2(z) = (2 f(z) (3.6a)

This result suggests to look for the solutions of Eq.(3.6)
in the form
(z) = 

0
(z) + n

1
2 1(z) + 0(n

1
4) (3.7)

and substituting (3.7) into (3.6) gives the two equations


0
��(z) + 

0
2

0
(z) = 0 (3.8a)


1
��(z) + 

0
2

1
(z) = 

1
2(z) 

0
(z) (3.8b)

The equation (3.8a) has the solutions in which A, B are
arbitrary amplitudes


0
(z) = A exp(i

0
z) + B exp(i

0
z) (3.9)

So, we are left with the nonhomogeneous equation
(3.8b) to be solved when f(z) is a sequence of delta
Dirac pulses. And, to make calculations easier to check,
we give, in terms of length L and time T, a dimensional
analysis of the main parameters, using the conventional
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notation [E] for the dimension of E.
[n] = [n

0
] = [n

1
] = LT; [] = [] = T;

[k] = L; [
0
] = L

, 
[

1
] = T ; [f] = L0T0 (3.10)

Bessel beam in a flow with nanodoped velocity

To solve Eq.(3.8b), we look for its solutions in the
form[15]


1
(z) = c

1
(z) w

1
(z) + c

2
(z) w

2
(z) (3.11)

where w
1
(z) = exp(i

0
z), w

2
(z) = exp(i

0
z) are solu-

tions of the homogeneous equation


1
��(z) + 

0
2

1
(z) = 0 (3.11a)

Then[15] taking into account the right hand side of (3.8b)
the derivatives c�

1,2
(z) of c

1,2
(z) are

c�
1
(z) = 

1
2(z) 

 0
(z) w

2
(z) [w

1
(z) w�

2
(z)  w�

1
(z) w

2
(z)]1

= (i
1
2(z) /2

0
) 

0
(z) exp(i

0
z) (3.12a)

and similarly
c�

2
(z) =  

1
2(z) 

 0
(z) w

1
(z) [w

1
(z) w�

2
(z)  w�

1
(z) w

2
(z)]1

=  (i
1

2(z) /2
0
) 

 0
(z) exp(i

0
z) (3.12b)

Substituting (3.9) into (3.12a,b) gives
c�

1
(z) = (i

1
2(z) /2

0
) [A + B exp(2i

0
z)]

c�
2
(z) =  (i

1
2(z) /2

0
) [A exp(2i

0
z) + B] (3.13)

We now suppose that f(z) is a sequence of delta pulses
 z/z

0
 where  is an integer in (, ),  the

Dirac distribution and z
0
 a constant.

Then, according to (3.6a) and in agreement with (3.10)


1
2(z) = (2 


 z/z

0
 (3.14)

and writing
c�

1
(z) = 


 c�

1,
(z), c�

2
(z) = 


 c�

2,
(z) (3.15)

we get from (3.13) and (3.14)
c�

1,
(z) = i[(2 /2

0
] z/z

0


[A + B exp(2i
0
z)] (3.16a)

and, using the properties of the Dirac distribution
c�

1,
(z) = iz

0
[(2 /2

0
]

[A + B exp(2i
0
z

0
)] zz

0
 (3.16b)

and similarly
c�

1,
(z) = i[(2 /2

0
] z/z

0


[A exp(2i
0
z) + B] (3.17a)

c�
1,

(z) = iz
0
[(2 /2

0
]

[A exp(2i
0
z

0
)+B] zz

0
 (3.17b)

so that
c

1
(z) = 


 c

1,
(z), c

2
(z) = 


 c

2,
(z) (3.18)

with according to (3.16b), (3.17b)
c

1,
(z) = iz

0
[(2 /2

0
]

[A + B exp(2i
0
z

0
)] Uzz

0


c
1,

(z) = iz
0
[(2 /2

0
]

[A exp(2i
0
z

0
)+B] Uzz

0
 (3.19)

in which Uzz
0
 is the unit step function.

Substituting (3.19) into (3.18) and taking (3.11) into
account achieves to determine 

1
(z).

These caculations are formal since nothing is known
on the convergence of the series (3.18) and this unsat-
isfactory situation comes from the definition (3.14) of


1
2(z) by an infinite se-ries. But, according to the rela-

tion (1.1) rewritten below for convenience
ð[sin(ðz/z

0
)] = 

n
 (z/z

0
n) (3.20)

we get


1
2(z) = ð (2 [sin(ðz/z

0
)] (3.21)

Then, using (3.16a), (3.17a) instead (3.16b), (3.17b),
the function c�

1,2
(z) are no more defined by the series

(3.15) but become
c�

1
(z) = ið[(2 /2

0
] [sin(ðz/z

0
)]

[A + B exp(2i
0
z)] (3.22a)

c�
2
(z) = ið[(2 /2

0
] [sin(ðz/z

0
)]

[A exp(2i
0
z) + B] (3.22b)

The price to pay is to perform the integration of (22a,b).
Let us for instance consider the first term of (3.22a)
[c�

1
(z)]

1
 = iðA[(2 /2

0
] [sin(ðz/z

0
)] (3.23)

with the integration
[c

1
(z)]

1
 = iðA[(2 /2

0
] 

0
z[sin(ðs/z

0
)] ds (3.24)

Let us introduce the functions
u = [sin(ðs/z

0
), v = [sin(ðz/z

0
) (3.25)

so that
du = ð/z

0
 (1u2)1/2 ds a), 

z
 = ð/z

0
 (1v2)1/2

v
 b) (3.26)

Then, using (3.26a) the integral (3.24) becomes
[c

1
(z)]

1
 = iðAz

0
/v [(2 /2

0
] I

1
(v) (3.27)

I
1
(v) = 

0
v (u) (1u2)1/2 du (3.27a)

taking into acccount (3.26b) we get at once 
z
[c

1
(z)]

1

= [c�
1
(z)]

1
 while according to (3.27a)

I
1
(v) = (1u2)1/2 U(v) + 

0
v U(u) (1u2)1/2 u du (3.28)

the integral in (3.28) needs a numerical approximation.
The integration of the second term of (3.22a)
[c�

1
(z)]

2
 = iðB[(2 /2

0
]

[sin(ðz/z
0
)] exp(i

0
z) (3.29)

gives
[c

1
(z)]

2
 = iðB[(2 /2

0
]


0
z[sin(ðs/z

0
)] exp(i

0
s)ds (3.30)

and, with (3.25), (3.26a) this integral becomes
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[c
1
(z)]

2
 = ið Bz

0
/v [(2 /2

0
] I

2
(v) (3.31)

I
2
(v) = 

0
v (u) (u) du,

(u) =(1u2)1/2 exp[(i
0
z

0
/ð) arc sinu] (3.31a)

and
I

2
(v) = U(v) (v)  

0
v U(u) �(u) du (3.32)

The integral in (3.32) requires also a numerical approxi-
mation. We have, of course a similar result for the ex-
pression (3.27b) of c

2
�(z).

Discussion

To manage the scalar wave equation with a vari-
able velocity v(z), we had to assume that n2(z) [= v
(z)] has the approximation 0(n

1
4) and also to general-

ize this approximation to the solutions of Eq.(3.4) sup-
posing in particular f(z) bounded.The technique used to
solve the inhomogeneous differential equation (3.8b) is
general, the only difficulties may come from the integra-
tion of the coefficients c�

1,2
(z), a numerical integration

could be needed (which is not the case if f(z) is a trigono-
metric function).

The Bessel solution (3.2) is the Durnin scalar
nondiffracting beam[16].

TE,TM FIELDS IN A NANODOPED
WAVE GUIDE

Maxwell equations

We consider a perfect conductor, cylindrical wave-
guide of z-axis and radius a, endowed with the nanodoped
permittivity in which m is an integer in 
(z) = 

0
 z

0


m 
z  mz

0
), 0 = r = a (4.1)


0
  are constant,  the Dirac distribution and accord-

ing to (1.1) and (1.2)


z
z) = 0 (4.1a)

We work with the cylindrical coordinates r, , z. The
fields do not depend on  and the permeability µ is con-

stant.
Then, the Maxwell curl equations are[17]


z


t


r
= 0 a)

(
r 
+1/r) 

t


z
= 0 b)


z 
E

r 


r


z
 + 

t
= 0 c) (4.2)


z
H(z) 

t
E

r
= 0 a)

(
r 
+1/r) H(z)

t
E

z
= 0 b)


z 
H

r 


r
H

z
 (z)

t
E= 0 c) (4.3)

These equations divide into two sets : TE (H
r
, H

z
, E)

and TM (E
r
, E

z
, H) fields.

From a dimensional analysis viewpoint, which is in-
teresting to foresee some results and to avoid some
bugs, we have, using the conventional notation [F] for
the dimension of F.
[E] = ML2T2Q1, [D] = L1Q,
[] = [] = M1L3T2Q2, [H] = T1Q,
[B] = MLT1Q2, [µ] = MLQ2, [(z)] = L1 (4.4)

in which L, M, T, Q denote length, mass, time and
charge. These results come from the Strat-ton dimen-
sional analysis[18] by changing Q into LQ in the dimen-
sions of the field densities since one has here to deal
with a 2D-space.

Now, substituting (4.2a,b)}into the time derivative
of (4.3c) gives the wave equation fulfilled by E
[

z
2 

r


r
r n2(z) 

t
2] E = 0 (4.5)

Substituting similarly (4.3a,b) into (4.2c) and using
(4.1a) shows that H satisfies also the wave Eq.(4.5).

So, we are left with this equation to be solved. Let
us remark that for a scalar field, the term 

r


r
rin

(4.5) is changed into 
r
r

r
 at the origin of some

confusion[19].

Boundary conditions

We look for the solutions of Eq.(4.5) in the follow-
ing form with arbitrary amplitudes A

e
, A

h

{E

, H


} = {A

e
, A


} (r,z) (4.6)

(r,z) = J
1
(kr) (z) exp(it) (4.6a)

J
1
 is the Bessel function of the first kind of order one

and (z) a function to be determined. From a dimen-
sional viewpoint :
[A

e
] = MLT2Q1, [A

h
] = L1T1Q, [] = L (4.6b)

Now, the solutions must satisfy the boundary condi-
tions on the perfect conductor surface r = a
TE : [

r
H

z
(r,z)]

r=a
 = 0, TM : [E

z
(r,z)]

r=a
 = 0 (4.7)

But, according to (4.2b), (4.3b)
TE : i

z
 = 

r
rE a),

TM: i(z)E
z
 = 

r
rH b) (4.8)

Then, substituting (4.6a) into (4.8a,b), performing the


r
-derivative of (4.8a) and using the relations


r
r J

1
(kr) = k J

0
(kr) a)


r


r
r J

1
(kr) =  k2 J

1
(kr) b) (4.9)

one checks at once that the boundary conditions (4.7)
are fulfilled if
TE: ka = p

l
, TM: ka = q

l
(4.10)
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in which p
l
, q

l
 are the lth roots of J

1
(x) = 0 and J

0
(x) =

0 respectively.
Finally, substituting (4.6a) into the wave equation

(4.5) and using (4.9b) give the differential equation sat-
isfied by (z) where n2(z) = µ(z)
��  [k2 2n2(z)]  = 0 (4.11)

which is a Mathieu-like equation[20] that we have now
to solve.

Mathieu equation

Let us start with the simple refractive index
n2(z) = µ

0
 + µz

0 
(zmz

0
) (4.12)

transforming Eq.(4.11) into
��  [22 (zmz

0
)] = 0 (4.13)

with
2 = 2 z

0
a),  2 = k2  2µ

0
b) (4.14)

We look for the solution of (4.13 in the form


m
(z) = exp[(zmz

0
)] U(zmz

0
) (4.15)

in which U(z) is the unit step function with U(0) = 1 so
that 

m
(mz

0
) = 1 and

(zmz
0
) 

m
(z) = (zmz

0
) (4.15a)

Now, a simple calculation gives


m
��  2 

m
=  exp[(zmz

0
)] (zmz

0
)

=  (zmz
0
) (4.16)

Taking into account (4.14a,b) the comparison of (4.13)
and (4.16) gives
 = 2 =  2z

0
(4.17)

supplying the equation
422z

0
2 + 2

0
 k2 = 0 (4.18)

with the solution
2 = [

0
 + (

0
2k22z

0
2)1/2] (22z

0
2)1 (4.19)

in which according to (4.10) k = p
l
/a or k = q

l
/a ; l =

1,2 3�
We now consider the permittivity

(z) = 
0
 z

0


m 
z  mz

0
), m = 0,1,2� (4.20)

which is (4.1) limited to the positive integers. Then, the
equation (4.11) becomes with 2, 2 given by (4.14)
��  [2  2 

m
 (zmz

0
)]  = 0 (4.21)

Let us look for the solutions of (4.21) in the form
(z) = 

j
 

 j
 (z) j = 0,1,2�,


j
(z) = exp[

j
(zjz

0
)] U(zjz

0
) (4.22)

Substituting (4.22) into (4.21) gives with j = 0,1,2�,

m = 0,1,2�


j 
[

 j
��(z)  

j
2 

j
(z) +

 j
 2 

m
 (zmz

0
) 

j
(z)] = 0 (4.23)

in which


j
2 = 

 j
 2 z

0
a), 

 j
 2 = k2  

 j
 2µ

0
b) (4.23a)

with according to (4.16)


 j
��(z) 

j
2 

j
(z) = 

j
 exp[

j 
(zjz

0
)] (zjz

0
)

= 
j
 (zjz

0
) (4.24)

Taking into account (4.24), Eq.(4.23) becomes


j
 

j
 (zjz

0
) + 

j
 

m
 

j
2 (zmz

0
) 

j
(z) = 0 (4.25)

Exchanging j and m in the second term on the left hand
side of (4.25) gives


j
 (zjz

0
) [

j
 +

m
 

m
2 

m
(jz

0
)] = 0 (4.26)

implying


j
 + 

m
 

m
2 

m
(jz

0
)] = 0 (4.27)

in which acccording to (4.22)


m
(jz

0
)] = exp[

m
(jm)z

0
] U[(jm)z

0
] (4.27a)

This expression is null for m > j and 
m
(jz

0
) = exp[

m
(j

m)z
0
] for m = j. Using this result and making m = j, j1,

j2� the relation (4.27) becomes


j
 + 

j
2 + 

j
2 exp(

j
 z

0
) +


j


2
2 exp(

j


2
 z

0
) + � = 0 (4.28)

giving 
0
+ 

0
2 = 0, 

1
+ 

1
2 +

0
2 exp(

0
z

0
) = 0, �

These relations determine the frequency bands 
j

in which the solutions (4.22) exist.
Then, substituting (4.22) into (4.6a) gives the com-

ponents E, H, of the TE and TM fields
E (r,z,t) = 

j
 A

 e,j
 J

1
(kr) 

j
 (z) exp(i

j
t) a)

H (r,z,t) = 
j
 A

 h,j
 J

1
(kr) 

j
 (z) exp(i

j
t) b) (4.29)

We have still to get {H
r
, H

z
} and {E

r
, E

z
}. Substituting

(4.29a) into (4.2a,b) gives the compo-nents {H
r
, H

z
}

of the TE field
i

l
 H

r
 = 

j
 A

 e,j
 J

1
(kr) 

z


j
 (z) exp(i

j
t)

i
l
 H

z
 = k 

j
 A

 e,j
 J

0
(kr) 

j
 (z) exp(i

j
t) (4.30)

Similarly, substituting ((4.29b) into (4.3a,b), we get
i

l
(z) H

r
 =  

j
 A

 h,j
 J

1
(kr) 

z


j
 (z) exp(i

j
t)

i
l
z) H

z
 = 

j
 A

 h,j
 J

0
(kr) 

j
 (z) exp(i

j
t) (4.31)

Discussion

The wave guide analyzed in this work has a par-
ticular structure: first, the inner permittivity for 0 = r = a
is nanodoped according to the relation (4.20) which is
(4.1) limited to the posi-tive integers: the general case
has still to be solved. Second, its interior is partitionned
by a set of virtual disks with radius a, dielectric con-
stant  and exceedingly thin thickness simulating delta



Pierre Hillion 65

Full Paper
NSNTAIJ, 4(2) 2010

Nano Science and Nano Technology

An Indian Journal

distributions, regularly distributed along the z axis. This
brief description of the inner wave guide suggests that
such a structure could be experimentally realized at least
approximately.

One may intuitively imagine that an electromagnetic
wave propagating inside the partitio-ned wave guide
will vibrate along oz acccording to the partitioning peri-
odicity. This would explain why (z) satisfies a Mathieu
equation, introduced by Emile Mathieu, a long time ago,
to analyze the vibrations of elliptic membranes. ït is
known[21] that the standard Mathieu equation{similar
to (4.21) with (zz

0
) changed into 2 cos[b(zz

0
)]}has

an infinity of periodic solutions,
Then, suppose that one could realize a nanodoped

wave guide, as described above, of length L between z
= 0 and z = L, it should be possible to check the
behaviour of TE, TM fields obtained by illuminating the
z = 0 face with an harmonic plane wave, its electric
field being parallel or perpendicular to the z axis and to
compare experiment and theory.

ELECTROMAGNETIC NANO FLASHES

Introduction

Changing  into  = t/t
0
, Eq.(1.1) becomes

ð[sin(ð)] = 
n
 (n) (5.1)

describing a sequence of Dirac pulses in time which are
identified with light flashes.

Now, in a homogeneous isotropic medum with B =
µH, D = E, the Maxwell equations with cylindrical co-
ordinates, r, , z are, for fields not depending on 


z


t


r
= 0 a)

(
r 
+1/r) 

t


z
= 0 b)


z 
E

r 


r


z
 + 

t
= 0 c)

(
r 
+1/r) H

r
 + 

z
H

z
= 0 d) (5.2)


z
H

t
E

r
= 0 a)

(
r 
+1/r) H

t
E

z
= 0 b)


z 
H

r 


r
H

z
 

t
E= 0 c)

(
r 
+1/r) E

r
 + 

z
E

z
= 0 d) (5.3)

These equations divide into two sets: TE (H
r
, H

z
, E)

and TM (E
r
, E

z
, H) fields. We are inte-rested into the

flashing TE, TM plane waves with the flash functions
(5.1)

TE, TM flashes

We have according to (1.1)

d/d [sin(ð)] = 0 (5.4)

Then, we look for the solutions of Eq.(5.2), (5.3) in the
form
{E(r, z,t), H(r, z, t)} ={E*(r, z), H*(r, z)} [sin(ð)] (5.5)

so that according to (5.4)


t
{E(r, z,t), H(r, z, t)} = 0 (5.6)

Substituting (5.5) into (5.2a,b) and (5.3c), taking into
account (5.6) give
E*(r, z) = 0, 

z
H

r
*(r, z)  

r
H

z
*(r, z) (5.7)

with the solution satisfying the divergence equation
(5.2d) :
H

r
*(r, z) = H exp(ikz) J

1
(kr),

H
z
*(r, z) = i H exp(ikz) J

0
(kr) (5.8)

H is an arbitrary amplitude and k an arbitrary wave
vector.

We have a similar result from (5.3a,b,d) and (5.2c)
for H, E

r
, E

z

H*(r, z) = 0, E
r
*(r, z) = E exp(ikz) J

1
(kr),

E
z
*(r, z) = i E exp(ikz) J

0
(kr) (5.9)

so that taking into account (5.6), (5.7), (5.9) and  = t/
t
0
, we finally get

E(r, z, t) = H(r, z, t) = 0
{E

r
(r, z,t), H

r
(r, z, t)} = {E, H}exp(ikz)

J
1
(kr) [sin(ðt/t

0
)]

{E
z
(r, z,t), H

z
(r, z, t)} =i {E, H}exp(ikz)

J
0
(kr) [sin(ðt/t

0
)] (5.10)

k has not the same value in TE and TM modes.
These solutions represent plane waves flashing at

regular times nt
0
.

Discussion

The TE and TM flashing waves has a characteris-
tic feature : the -component of the elec-tric (mag-
netic) field is null for TE (TM) modes. So, reduced to
the r, z components of electric and magnetic fields,
they are fully confined in the r, z-plane. As a conse-
quence, no relation exists between the circular fre-
quency  and the wave vector k which may be ob-
tained from boundary conditions. Suppose for in-
stance, that these flashing waves propagate inside a
perfect conductor cylindrical waveguide of z-axis and
radius a. The boundary conditions on the electromag-
netic field are
TE : [

r
H

z
]

 r = a 
= 0, TM : [E

z
]

 r = a 
= 0 (5.11)

that is according to (5.8), (5.9)
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TE : J
1
(ka)

 
= 0, TM : J

0
(ka) = 0 (5.12)

implying
TE : ka = p

l
, TM : ka = q

l
(5.13)

in which p
l
, q

l
 are the l th roots of J

1
(x) = 0 and J

0
(x) = 0.

The periodic Dirac distribution (5.1) has a simple
frequency representation 
 = 1/t

0
 


 exp(it) [sin(ðt/t
0
)] dt (5.14)

Introducing the variable T = sin(ðt/t
0
) such as

dT = ð/t (1T2)1/2 dt, t = (nt
0
/ð arcsinT + nt

0
(5.15)

in which n is an integer in ( the Fourier transform
(5.14) becomes
 = 

n
 

n
 (5.16)


n
 = 1/t

0
 


 exp{i
[(nt

0
/ð arcsinT + nt

0
] (T) dT (5.16a)

that is


n
 = 1/ð exp(int

0
) (5.17)

and, substituting (5.17) into (5.16) gives
 = 

n
1/ð exp(int

0
) = 1/ð (1  exp(it

0
)1 (5.18)

On the other hand, substituting the series (5.1) into
(5.14) give
 = 1/ð  



 
n
exp(it) (tnt

0
) dt (5.19)

in agreement with (5.18) if the series in (5,19) can be
integrated term by term, which justifies, a posteriori,
the exchange of integration and summation.

CONCLUSIONS

That 1D-nanodoping may be described by a se-
quence of delta Dirac pulses is rather natural. In a doped
material, one of its properties, mechanical, chemical,
electric, magnetic� is per-turbed by the adjunction of

a substance to improve the performances of this prop-
erty. Nano-doping intervenes when the dimension of
this substance is much more smaller than the dimension
of the medium in which this property has to be improved.
In 1D-nanodoping, the injected substance may be con-
sidered as a dimensionless dot, correctly represented
by a Dirac distri-bution.

Once accepted this representation of 1D-
nanodoping, a mathematical simulation of this situ-
ation, based on the conventional equations of mechan-
ics, acoustics, electromagnetism has to be performed
to forsee the consequences of this nanodoping. To
estimate the performances of 1D-nanomaterials, it is

first necessary to get manageable analytical solutions
of this simulaion

As shown here, this result is reached at the expense
of sometimes rather severe approxima-tions which
could be improved later by numerical simulations, also
able to tackle more elaborate situations.

We may imagine 1D-nanodoped material wave
guided to a target.

Eq.(1.1) is a particular case of the relation[9]

[()] = 
n
 (

n
 |

n
)]1 (6.1)

in which the 
n
�s the zeroes of 

When () = J() where J is the Bessel function
of the first kind of order  with the zeroes j

n 
n = 1,2�.

we get from (6.1)
[J

0
()] = 

n
 (j

0,n
) |J

1
(j

0,n
)|1 a)

[J

()] = 

n
 (j

,n
) |J

1
(j
n

)|1   1 b) (6.2)

For instance, proceeding as in Sec.(5,2), we get with
(6.2a)
E(r, z, t) = H(r, z, t) = 0
{E

r
(r, z,t), H

r
(r, z, t)} = {E, H}exp(ikz) J

1
(kr) 

t
[J

0
()]

{E
z
(r, z,t), H

z
(r, z, t)} = i {E, H}exp(ikz)

J
0
(kr) 

t
[J

0
()] (6.3)

These solutions represent plane waves flashing at times
t = j

0,n
t
0, 

n = 1,2�
The relation (1.1) supplies 1D-nanodoping made of

delta Dirac pulses along a direction, Its generalization
ð2[sin(ðx/x

0
)] [sin(ðy/y

0
)] = x

0
y

0
 

m,n
 (xmx

0
)

(yny
0
) (6.4)

would give a 2D-nanodoping with delta Dirac pulses at
the vertices of a rectangular grid.

Using the relation[9] (x)y = (r) /ðr, r = (x2+y2)1/2,
the right hand side of (6.4) becomes x

0
y

0
 

m,n
 r

m,n
 /

ðr
m,n

 with r
m,n

 = [(xmx
0
)2 + (yny

0
)2]1/2.

This result could be applied to flashes in the (x, ct)
plane and generalized to 3D-nanodoping.
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