Parası kalmadığı için otobüse binemiyordur ailesi porno izle ona daha yeni para gönderdiği için tekrar porno istemeye utanınca mecburen otostop çekmek için youporn çantasını alarak yol kenarına gelir etekli porno liseli türk kız yol kenarında dururken yanına yaklaşan porno kibar bir gencin onu gideceği yere kadar bırakmak porno izle istemesine çok mutlu olur arabaya bindiklerinde gideceği yer ile porno arabayı kullanan adamın gittiği yer arasında çok mesafe sex izle farkı olduğunu anlayan türk kız bu yaptığı porno indir iyilik karşısında arabada ona memelerini açar porno sapıklaşan adam yol kenarındaki hotelde durarak porno izle üniversiteli otostop çeken türk kızına odada sakso çektirip sikerIdentification of Lead Compounds againstScm (fms10) in Enterococcus faecium Using Computer Aided Drug Designing| Abstract

Abstract

Identification of Lead Compounds againstScm (fms10) in Enterococcus faecium Using Computer Aided Drug Designing

Author(s): Muhammad Asif Rasheed

Enterococcus faecium DO is an environmental microbe, which isa mesophilic, facultative, Gram-positive, and multiple habitat microorganism. Enterococcus faecium DO is responsible for many diseases in human. The fight against infectious diseases is confronted by the development of multiple drug resistance in E. faecium. The focus of this research work is to identify a novel compound against this pathogen by using bioinformatics tools and technology. We screened the proteome (accession No. PRJNA55353) information from the genome database of the National Centre for Biotechnology Information (NCBI) and suggested a potential drug target. I-TASSER was used to predict the three-dimensional structure of the protein, and the structure was optimized and minimized by different tools. PubChem and ChEBI were used to retrieve the inhibitors. Pharmacophore modeling and virtual screening were performed to identify novel compounds. Binding interactions of compounds with target protein were checked using LigPlot. pkCSM, SwissADME, and ProTox-II were used for adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Novel selected compounds have improved absorption and have better ADMET properties. Based on our results, the chemically identified inhibitor ZINC48942 targeted the receptor that can inhibit the activity of infection in E. faecium. This research work will be beneficial for the scientific community and could aid in the design of a new drug against E. faecium infections. It was observed that novel compounds are potential inhibitors with more efficacy and fewer side effects. This research work will help researchers in testing and identification of these chemicals useful against E. faecium.


Share this