Parası kalmadığı için otobüse binemiyordur ailesi porno izle ona daha yeni para gönderdiği için tekrar porno istemeye utanınca mecburen otostop çekmek için youporn çantasını alarak yol kenarına gelir etekli porno liseli türk kız yol kenarında dururken yanına yaklaşan porno kibar bir gencin onu gideceği yere kadar bırakmak porno izle istemesine çok mutlu olur arabaya bindiklerinde gideceği yer ile porno arabayı kullanan adamın gittiği yer arasında çok mesafe sex izle farkı olduğunu anlayan türk kız bu yaptığı porno indir iyilik karşısında arabada ona memelerini açar porno sapıklaşan adam yol kenarındaki hotelde durarak porno izle üniversiteli otostop çeken türk kızına odada sakso çektirip sikerProbability as a Field Theory| Abstract
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Probability as a Field Theory

Author(s): Solomon BT and Beckwith

A review of quantum theory shows that quantum theory has substantially replaced all photon behaviour with wave equations. This therefore, has resulted in a quantum theory that does not have a mechanism to explain how Nature implements probabilities. The proposal for such a mechanism is divided into 3 parts of which this paper is the third. The papers [2] and [6] are the first and second parts. This paper proposes a basic field theory for probabilities, which is derived from a step by step analysis of the Point Spread Function of photon localizations. By deconstructing probabilities to separate out the wave modulation from the underlying probabilities it is possible to determine that the photon energy is the cause of the probability field that surrounds the photon. Further, the classical definition of probabilities is used to derive a physical definition of probabilities. From this is derived the correct or true mechanism of the probability field, that of location transfer or translocation, and some addition thoughts on Bell’s Theorem.


Share this