44 7460 854 031

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Green synthesis and biological applications of doped carbon dots

Author(s): Sobhi Daniel

Microwave (MW)-assisted pyrolysis has emerged as the most-feasible green synthetic approach for the synthesis of carbon dots due to its efficient energy consumption, sustainability, lower temperature and shorter reaction time along with higher product yield. Carbon based nanomaterials are known for their fascinating optical and electrical properties and their potential applications in energy conversion and storage. Doping of carbon dots is the major renowned pathway to control the properties of nanoscale carbonaceous materials. Doping causes a significant change in electronic structure of the carbon dot materialsand which eventually leads to a change in the optical and electrical properties and makes them suitable for potential devices. Owing to their structural diversity, carbon nanodots exhibit varied and tunable photoluminescence such as up-conversion, photoluminescence, phosphorescence, solid state fluorescence, and piezo-chromic fluorescence.These incredible properties of CDs make them applicable to live cell imaging, biology, materials, catalysis, optics and sensors Here we report a facile and effective one pot synthetic strategy to prepare nitrogen, sulphur and first row transition metals doped carbon dots by microwave assisted green synthesis, characterization of these doped carbon dots and their diverse applications focusing especially in the biological field.


Share this       
Google Scholar citation report
Citations : 9398

International Journal of Chemical Sciences received 9398 citations as per Google Scholar report

Indexed In

  • Google Scholar
  • Open J Gate
  • China National Knowledge Infrastructure (CNKI)
  • Cosmos IF
  • Geneva Foundation for Medical Education and Research
  • ICMJE

View More