All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.


The hybrid fusion-fission reactor as the solution to the energy crisis

Author(s): John E.Brandenburg

Advances in fusion energy research now allow the construction of Q = 1 Tokamaks and make possible a new type of nuclear energy reactor: the Fusion-Fission Hybrid. The Hybrid makes advantageous the fact that the easiest fusion reaction : DT fusion, produces a 14MeV neutron which can drive much more energetic fission reactions in a fissile blanket. This solves many problems seen in pure fusion and allows light-water fission reactor technology for power reactors with fusion cores. Two basic types of Hybrid reactors are possible. One type, a waste treatment reactor, uses a Q ~ 1 fusion core to transmute high-level waste into shorter-lived isotopes for more convenient disposal, thus solving the concerns related to long lived radioactive byproducts and long term nuclear waste. The second type, the Fusion Controlled Fission Reactor uses a fusion core to excite and control fission chain reactions in a fission blanket for power production. Here the fusion reactor is Q << 1 since it only needs to supply enough neutrons to bring the fission blanket to criticality. Assuming the delayed neutron fraction in a fission reactor is required for a fusion reactor to create criticality indicates a density-confinement time or nE =1.5 × 1010 for “Hybrid Breakeven” or 1/10,000 of Lawson Criterion. Such a hybrid reactor can provide space nuclear power based on Thorium transmutation to U-233 in space by using a fusion neutron source.

Share this