All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.


Advances in the Treatment of Dye Containing Wastewater using Different Systems

Author(s): Usha Smith

Plants, as sessile Dye-containing wastewater should be treated effectively using eco-friendly technologies in order to prevent the adverse impacts on the environment and natural water resources. Enzymes can be delivered to the target effluent, including nanoparticles as delivery systems. It also emphasizes the need for current and future research to focus on developing economically feasible and environmentally sustainable wastewater treatment practices. Practically promising for color removal from textile wastewater. Regarding the factors that influence the performance of photocatalytic membrane reactor systems, the role of nanoparticles were discussed by considering their mechanisms of color removal. The limited availability of fresh water is a global crisis. The growing consumption of fresh water by anthropogenic activities has taken its toll on available water resources. Unfortunately, water bodies are still used as sinks for wastewater from domestic and industrial sources. However, in recent times, the need to replenish our water resources has been receiving increasing attention. This has led to the development of strategies to return water to its source in the least toxic form possible, to enable reutilization of water. These strategies and processes may be collectively termed as wastewater treatment. An anthropogenic activity that produces large volumes of concentrated effluent is the process of dyeing. Whether applied to fabric, paper, pulp, leather. The processes involved in dyeing generate effluents that are rich in colorants. The presence of colorants in wastewater and eventually in receiving waters poses a threat to aquatic life forms. This article attempts to explore and evaluate the use of enzymes to degrade or decolorize the dyestuffs in effluents as an alternative to conventional treatment methods. The removal of coloring matter from effluent is a major problem faced by industries. In general, the chemical structure of dyes contains conjugated double bonds and aromatic rings. Many synthetic dyes tend to persist in the environment due to the inherent stability of their molecular structure. Azo dyes for example, have a characteristic azo N₌N linkage which is electron withdrawing in nature. The presence of this linkage decreases the susceptibility of azo dyes to oxidative reactions, thus making them resistant to conventional degradation methods. Complex pollutants that resist degradation and tend to persist in the environment for long durations are considered to be recalcitrant pollutants. Recalcitrance of a given pollutant may sometimes be attributed to unusual substitutions with halides very large molecular size and presence of unusual bonds or highly condensed aromatic rings. The presence of tertiary and quaternary carbon atoms also contributes to recalcitrance. In recent years, the use of living systems such as microorganisms and plants to degrade recalcitrant pollutants is gaining importance as a viable alternative to existing physio-chemical removal methods. Stringent government policies regarding permitted levels of pollutants, high costs of specialized chemical treatments for pollutant removal and the fact that some of these treatments create additional solid waste has led to the development of many effective, yet simple biological methods. These treatment processes can be collectively categorized under bioremediation of wastewater. Enzymes are versatile and may be delivered to the target effluent in different ways.

Share this