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Introduction 

Quantum theoretic approach 

One of the objectives of this paper is to provide an alternative model to the fundamentals of physics, the precursor or  

prerequisite to quantum theory. It is not about building a better quantum theory. That is unlikely given that over the last 100  

 

  

Abstract 

Quantum theory does not have a mechanism that explains how Nature implements probabilities. Thus, the main objective of this 

paper is to present new directions for the photonics research for the control of photon localization from probabilistic properties, 

and another step towards a probability field theory. The expectation is to improve photon collection and loss mitigation. The 

paper delves into the physics of photon probability control to explain the basis for the 4 new proposed experiments. It is known 

that photons are not affected by the presence of electric or magnetic fields. Therefore, an alternative question is, can photon 

probabilities be controlled? Probability control means vectoring and modulation. Vectoring is the control of the direction of 

localization, and modulation is the control of the distance to localization. This paper proposes a control mechanism by rethinking 

the foundations of quantum theory, using (i) a modified Schrödinger wave function, (ii) a new structure for particle design, (iii) the 

existence of subspace (x, y, zand no t), (iv) that all particles consists of a disc of the modified Schrödinger or the probabilistic wave 

function, orthogonal to the particle’s motion vector and (v) all other particle properties (e.g. electromagnetic wave, charge, mass, 

etc.) are added to this structure. The shape of the new probabilistic wave function is very close to that of the Schrödinger wave 

function. It is proposed that probabilities can be controlled by altering the electric and magnetic field densities, as probabilities are 

function the electric and magnetic fields. Thus, a new formula for the Airy Pattern. Modified Airy Pattern experiments are 

proposed to confirm these findings. These include measuring the photon’s electric field amplitude, the electric fields in materials, 

using the Airy Pattern to filter photons by their phase. The new theoretical results confirm that probability is a function of the 

wavelength. Finally, more than 4 experiments are proposed. 

Keywords: Schrödinger wave function; Photon localization photon probability; Airy Pattern; Photon propagation; Electron shell; 

Probability; Bell’s theorem 
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years, thousands of expert physicists have checked, double and triple checked this theory as it stands. With an alternative to 

the foundations of physics one can then falsify (technical usage) quantum theory with three possible outcomes. (i) The 

foundations of quantum theory are correct and alternative fundamentals are incorrect, resulting in a strong better quantum 

theory, (ii) The proposed foundations of physics lead to a different and better version of quantum theory or (iii) The interplay 

between both version, contemporary and proposed foundations, lead to more questions than answers. Given that Nemiroff 

[1], using Fermi Gamma-Ray Space Telescope photographs of gamma ray burst, showed that quantum foam could not exist, 

increases the urgency to explore alternatives to the foundations of physics. 

 

Quantum theory describes both mass-based particles and massless particles as exhibiting wave-particle duality. Experimental 

confirmation of this duality can be found [2] such that (i) the photon particle behavior can be demonstrated by the 

photoelectric effect (given a work function W) of energy E with photon frequency ν as,  

 

 E h W   (1) 

 

(ii) the electron’s wave behaviour can be described by Compton’s scattering. A photon scattered at angle θ has a longer 

wavelength λ1 given the electron’s Compton wavelength λe, 

 

 1 1 1  cos       (2) 

 

 e

h

mc
   (3) 

 

And (iii) the de Broglie’s matter wave, that mass matter and massless light satisfy the same energy-momentum and 

momentum-wavelength (p-λ) relationship, 

 

 
h

p


  (4) 

 

Quantum theory’s wave mechanics is described by the Schrödinger wave equation Ψ(x,t) per  

 

 
2 2

2 2 4Ψ ,i x t c m c
t i t

    
    

    
 (5) 

 

Giving Born’s interpretation of |Ψ|
2
 as the probability density of finding system at spacetime location (x,t), 

 

   
2

Ψ , ,Px t x t  (6) 
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Such that the probability density can be moved around, but cannot be created or destroyed in the absence of explicit creative 

or destructive physical processes. As the physical states in quantum mechanics are linear waves they can be superposed to 

form other waves using Fourier transforms. And a wave of any kind satisfies the uncertainty relation that for matter waves is 

the Heisenberg uncertainty principle 

 

2

h
x p    (7) 

 

Therefore, one notes that quantum theory is essentially a wave theory used to describe particle behavior, with all non-wave 

properties (probabilities for example) described in terms of this wave nature. Photons in particular are also modelled using 

wave equations known as Bessel functions. As Roychoudhuri [3] proposed, “We need to embark anew on comprehensive 

foundational studies about generation, propagation, and detection of EM waves across the entire spectrum. Huygens-

Fresnel’s wave picture and Einstein-Dirac’s indivisible quanta represent one of the strongest unresolved issues in physics. 

 

While the authors agree with his premise for the need for foundational studies, the authors differ in approach. Solomon and 

Beckwith [4] laid the ground work required to model photon behaviour in terms of probabilities instead of wave equations or 

Bessel functions. This paper adds to that work [4]. 

 

How is it possible to derive an alternative to wave equations? In Operations Research, there is a class of mathematic search 

techniques, mathematical programming, that have a unique property known as Primal-Dual formulations. Mathematical 

programming consists of an objective function that is matrix row, a matrix of constraints whose inequalities form a matrix 

column of boundary conditions, known as the Primal problem. The Dual problem exists when the constraint matrix rows and 

columns are swapped, and concurrently, the objective function is swapped with the boundary conditions. It turns out that the 

solution to the Primal formulation is identical to the solution of the Dual formulation. That is, two apparently different 

formulations of the same problem have identical solutions. 

 

The point spread function (PSF), here termed Airy Pattern (not Airy Disc), of photons projected through a pin hole to a 

screen, is the basis of this deconstruction. However, the modern definition of this type of PSF is a Bessel function expressed 

only in terms of wave functions and therefore not suitable for the proposed deconstruction, as the Bessel functions have 

entirely removed the photon’s probabilistic behaviour. The wave Bessel functions can be considered the Primal formulation. 

To determine the probabilistic behaviour, the Dual formulation, one has to go back to the older formulation (Appendix B) of 

the Airy Pattern. As proof that this Dual formulation exists, the probabilistic Dual formulation should give identical results to 

the Primal Bessel formulation. That is, if the primal formulation wave equations can describe probabilities, then the Dual 

formulation probability density should be able to describe wave behaviours. 

 

Further, there is in physics research, what is known as the pilot model [5], which has a specific re-interpretation of 

probability, and not just on the basis of wave interference. Quoting [6]. 
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The Copenhagen interpretation is essentially the assertion that in the quantum realm, there is no description deeper than the 

statistical one. When a measurement is made on a quantum particle, and the wave form collapses, the determinate state that 

the particle assumes is totally random. According to the Copenhagen interpretation, the statistics don’t just describe the 

reality; they are the reality.  

 

The research in this paper is to determine another layer of statistical inference, as an alternative to the Copenhagen 

interpretation, and that is what the offered aim of this paper is. 

 

Why rethink photon probabilities? 

In 2015, Steinhardt and Esftathiou [7] stated that the Planck Space Telescope data shows that the Universe is simpler than 

had been thought and that both string and quantum theories require revisions. To add to this debate, in 2012 using NASA's 

Fermi Gamma-ray Space Telescope photographs of gamma ray burst, Nemiroff [1] showed that quantum foam could not 

exist.  

 

Solomon [8-13] proposed that contemporary physics can be categorized into three types of particles, inelastic and point-like 

(quantum theory), tensile (strings) and compressive. Assuming that particles were compressive Solomon [8-12] proved that a 

new equation for gravitational acceleration (1) that does not require a prior knowledge of the amount gravitating mass.  

 

2g c  (8) 

 

Where τ is the spatial gradient of the time dilation transformation or change in time dilation transformation divided by that 

distance, and noting that the time dilation transformation is the ratio of tv/t0 per Lorentz-FitzGerald transformations (LFT) or 

(9), and Newtonian Gravitational Transformations (NGT)or (10). Thus, Solomon’s g=τc
2
 provides a mathematical solution to 

Hooft’s [14] assertion that “absence of matter no longer guarantees local flatness”. 
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The existence of (8) raises substantial doubts about the validity of string theories as strings are based on the opposite axiom 

that particles are tensile. Further, strings contradict Lorentz-FitzGerald transformations (LFT).  

 

Therefore, pursuing Steinhardt and Esftathiou’s [7] need for a different approach to the physics, there are fundamental 

questions that need to be answered, (i) How are probabilities implemented in Nature? and (ii) Can these probabilities be 
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controlled? The objective of this paper is to present photon probability functions as an alternative to Bessel functions, to 

model photon behaviour. 

 

Roychoudhuri [3] summarizes that there are two types of photon models, (i) Huygens-Fresnel’s wave and (ii) the Einstein-

Dirac’s indivisible quanta. As Roychoudhuri [3] states, the definition of a photon by quantum electrodynamics is something 

like an indivisible packet of energy but represented by a Fourier monochromatic mode of the vacuum which is problematic, 

for the following reasons: 

 Such individual photons cannot be localized in space and time. 

 An infinitely long Fourier mode violates the principle of conservation of energy. 

 Superposition of many Fourier frequencies creating a space-finite pulse in free-space to model pulsed light is an 

invalid conjecture because waves cannot interact and regroup their energies in the absence of interacting materials. 

 It assigns rich properties to “vacuum” and yet relativity and quantum physics do not explicitly recognize space as a 

real physical medium. 

 The quantum photon’s indivisibility directly contradicts the immensely successful HF diffraction theory. 

 

Using Roychoudhuri’s critique as a basis for comparison, one can state that this paper proposes a third model derived from 

the Airy Pattern, an infinitely thin disc whose plane (x-y axes) is orthogonal to the photon’s motion vector along the z-axis, 

that is not infinite (per ii), and based on a “richer” (per iv) property of spacetime, one that involves deformable spacetime(x, 

y, z, t) and deformable subspace (x, y, z).  

 

Probabilistic Wave Function Ψp Derivation from the Airy Pattern 

Quoting Richard Feynman
1
 regarding the Schrödinger wave function, “When Schrödinger first wrote it down, he gave a kind 

of derivation based on some heuristic arguments and some brilliant intuitive guesses. Some of the arguments he used were 

even false, but that does not matter; the only important thing is that the ultimate equation gives a correct description of 

nature.” 

 

Therefore, since the Schrödinger wave function works, is it possible to derive the Schrödinger wave function from the 

empirical data? The derivation below gives a wave function, Probabilistic Wave Function ψP, that is very similar to 

Schrödinger’s. 

 

Excerpted from [15] the following details how the Probabilistic Wave Function ψP was derived from the Airy PatternψA. The 

necessary assumption is that the particle’s wave function (Schrödinger or otherwise) can be determined from its projection, 

the Airy Pattern, on an opaque screen. That the two, the particle’s wave function and the Airy Pattern, are related by a cause 

(particle’s wave function) and an effect (the Airy Pattern). Schrödinger’s
2
, ΨS(11) with their respectively solutions ψ and ψS 

and quantum mechanical spatial solution ψSS, 

                                                           

1
http://www.feynmanlectures.caltech.edu/III_16.html 

2
 http://www.colorado.edu/physics/TZD/PageProofs1/TAYL07-203-247.I.pdf 
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       ,S SSx t x cos t isin t        (11) 

 

     , i t i t

S SSx t e x e Asin k x 

     (12) 

 

   SS x Asin kx   (13) 

 

2 /k    (14) 

 

Where A is the maximum amplitude, A sin (kΨx) is the amplitude between nodes at distance x, and ω is angular frequency of 

this standing wave. FIG. 1. (red solid line) shows the solution ψ (12) to the Probabilistic Wave Function Ψ, 

 

0/I I   (15) 

 

This probabilistic wave solution ψ can be deconstructed from 2 components. The first, is the wave term in spacetime, the 

space wave χ (FIG. 1. dotted grey line), (13) 

 

      /Asin u sin w sin      (16) 

 

And the second is the envelope probability density function φ (FIG. 1. dashed green line) of un-normalized probabilities from 

the u function of (14), as follows, 

 

    1/ 1/ / θAu w sin     (17) 

 

Such that, 

 

 0/ sin /I I u u     (18) 

 

In effect, the wave space wave χ (16), weights the probability envelope probability density function φ (17), to produce the 

probabilistic wave solution ψ(18). This weighting is equivalent to the space wave χ casting a shadow on the envelope 

probability density function φ and upper bounds the probabilistic wave solution ψ in a consistent mathematical manner. 

 

Space wave χ (FIG. 1. dotted grey line) has a constant amplitude (maximum of I/I0=1) and damped period. This is because 

the space wave χ wavelength λχ increases as the radial distance rA increases. Compare (12) with damped oscillations
3
 (19). 

                                                           

3
 http://hyperphysics.phy-astr.gsu.edu/hbase/oscda.html 
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 1costx e a t     

 (19) 

 

 

FIG. 1. Probabilistic wave solution ψ (solid red) and its 2 components, χ (dashed grey) and φ (dot-dash green). 

 

Where γ is the damping coefficient, a amplitude, α is phase, and ω1 is related to damped oscillations. 

Clearly, the Schrödinger’s wave function solution ΨS (12) is a damped oscillation that is phase shifted. Replacing the inverse 

function envelope probability density function φ with an equivalent exponential
4
 term (20), and the time t variable with radial 

distance rs gives (21), a damped oscillation version of ψ.  

 

sre
 

 sre
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  (20) 

 

 1cossr

se a r
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   (21) 

 

Both the inverse (17) and the exponential (20) forms of the envelope probability density function φ term appear similar. The 

exponential term (20) is at best a good approximation
5
 but not a perfect fit. Therefore, neither the space wave χ nor the 

probabilistic wave solution ψ are damped spatial oscillations. 

However, both the space wave χ and the probabilistic wave solution ψ have damped spatial periods, as determined by (16). 

(16) shows that the space wave χ, is constant when θ is constant, that is, where the ratio of rA to dA is constant, 

 

  atan /A Ak sin r d   (22) 

 

                                                           

4
Even though the exponential term +1/u has a positive sign compared to the negative in-γ, the u function is an inverse. 

5
Regression fitting the data (1/u against exp+1/u) gives R2 of 99.944%, 99.562%, 98.131%, 95.846% and 92.959% at screen 

distances, ds of 0.10 m, 0.25 m, 0.50 m, 0.75 m and 1.00 m, respectively. Compared to an exact theoretical model producing 

an R
2
 of 99.9999%. That is the damped oscillation model fails as dA increases. This implies that a different model is at work. 
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  /Asin k w    (23) 

As a function of θ, (22) confirms that the space wave χ, is not a time varying standing wave function, kθ(wA/λ)π represents 

the phase shift of these spatial oscillations, and spacetime disturbance χ is the outward projection of the particle’s own wave 

function. By (16) and (22), (24) confirms that the envelope probability density function φ is a spatial geometric structure 

whose probability decreases with the particle’s wavelength λ.  

 

  1/ /Ak w    (24) 

 

That is, the higher the energy of the particle, the smaller the space wave χ, and lower the probability of particle localization 

within this smaller geometry. Therefore, the space wave χ, the envelope probability density function φ and thus, the 

probabilistic wave solution ψ are derived from a common mechanism for all particles.  

 

It is proposed that the shape of the particle’s probabilistic wave solution ψP can be reconstructed from its space wave χP and 

its envelope probability density function φP. Assuming the particle occupies some space, extrapolating back (along the z-

axis) to the center of the particle, dA=0 would give, 

 

 90 1ok sin    (25) 

 

Along both the x- and y-axis, given x the distance from the center of the particle, the aperture wA=2x. Given kΨ (13), by (23) 

particle’s space wave χP is, 

 

   2 /P sin x sin k x     (26) 

 

From (24) the particle’s envelope probability density function φP is, 

 

/ 2 1/P x k x     (27) 

 

And from (16) the particle’s probabilistic wave solution ψP is,  

 

   1/P P P k x sin k x          (28) 

 

The particle’s probabilistic wave solution ψP (28) explains how Airy Pattern and interference patterns are produced. The 

particle’s envelope probability density function φP is the maximum probability amplitude and its space wave χP determines 

the oscillations along the x- and y-axes. Note also, that the particle’s space wave χP (26) is not period damped like that of the 

interference patterns space wave χ (23). This affirms that the latter (23) is a projection of the former (26).  
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Since (28) is non integrable, it will not be easily to reverse engineer a Schrödinger-type wave function, if one exists. A non 

integrable probabilistic wave solution ψ (28) would concur with the thesis that this wave function is an orthogonal 

displacement in spacetime which is not motion. 

Therefore, along the z-axis by (22), as θ→0 

 

  atan 0 / 0Ak sin d    (29) 

 

And as  

  , / 0P z Asin k w     (30) 

 

  , 1/ / 1/ 0P z Ak w     (31) 

 

However, θ→0 

   , / / / 1P z p P A Ak w k w           (32) 

 

Equation (28) describes the particle’s wave function ΨP=ψP in both the x- and y-axes while the z-axis function (32) is a 

constant 1. It shows that, the particle wave function along the z-axis is not a function of this distance, and thus the wave 

function is orthogonal to the particle’s motion. The particle’s intensity shape is symmetrical conic-like disc in the plane 

orthogonal to motion, but its physical shape is an infinitely thin disc. This is a structure that would be consistent at any 

velocity vp<c and vp=c.  

 

The basic particle can be described, Solomon [15], as umbrella shaped, consisting of a wave function disc and probability 

disc that are orthogonal to its motion vector. Therefore, there are 5 parts to a basic particle, i) motion vector, ii) space wave χP 

disc (26), iii) probabilistic envelope probability density function φP disc (27) that iv) combine to form the probabilistic wave 

solution ψP disc (28) and v) the projected probabilistic wave solution ψ disc (18) that results in the diffraction patterns. All 

other properties (e.g. mass, electric field and magnetic field) are added to this structure. The utility of this umbrella shape is 

that “orbiting” electrons with motion vectors pointing to the center of the nucleus will not produce synchrotron radiation, and 

therefore, by inference do produce photon emissions when not. 

 

Solving for Airy Pattern Probability With [1/(Kλr)] Sin(Kλr) 

The objective of this section is to solve the range of value for which the Airy Pattern’s wave function ψP exists. Note, the 

point spread function (PSF), here termed Airy Pattern, of the photons projected through a pin hole to a screen, is the basis of 

this deconstruction. However, the modern definition of this type of PSF is a Bessel function expressed only in terms of wave 

functions and therefore not suitable for the proposed deconstruction. Therefore, reverting to the old definition of the Airy 

Pattern’s wave function ψA (33) and its corresponding space wave χA (34), and envelope probability density function φA (35), 

given the pinhole aperture diameter wA, the distance between pin hole and screen dA and angular displacement θ from pinhole 

a radial position rA on the screen, 
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Where, for small θ, 

 

A

A
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k
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  (36) 

 

For a radial path, the Airy Pattern ψA (33) along a radius rA as a probability density function of photons arriving at the screen 

a distance dA from the pin hole of with wA, gives, the total probability density PψA of, 
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1 1
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To Determine the Lower Bound rAL 

For r≠0, and r>0 gives, 
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Because the series has to converge very quickly, kλ is very much less than 1, and numerical testing (TABLE 1) shows, 
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Where, (see Appendix D, deriving rψ, on how rψ was arrived at), 
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That is, rA is lower bound rAL, 
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ALr k r   (41) 

 

To determine the upper bound rAU 

 

For rA=rAL to rA=rAU gives, 
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Because the series converges very quickly, 
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As rAL≈0. 
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Therefore, the Airy Pattern probability PA along a radius rA,  
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Since the maximum probability must be 1 for any value of rA, when rA=rAL from (45) the coefficient of the sine function be 1, 
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That is, 

 

1
AL A AUk r r r r
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Therefore, the Airy Pattern probability PA along a radius rA,  
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Therefore, the question, why isn’t there a dark spot at rA=rAL? It is for two reasons, (i) at certain distances dA this is 

observable, and (ii) photon probabilities PN(θ,r) cause this dark spot to be smudged. 

 

TABLE 1. Airy pattern probability rAL calculations. 

 

Visible Light Spectrum 

(nm) 

kλ PψA rψ PψA/rψ 

Violet 400 5.09E-10 1.07E-02 1.07E-02 1.00E+00 

Indigo 445 5.67E-10 1.19E-02 1.19E-02 1.00E+00 

Blue 475 6.05E-10 1.27E-02 1.27E-02 1.00E+00 

Green 510 6.49E-10 1.36E-02 1.36E-02 1.00E+00 

Yellow 570 7.26E-10 1.52E-02 1.52E-02 1.00E+00 

Orange 590 7.51E-10 1.58E-02 1.58E-02 1.00E+00 

Red 650 8.28E-10 1.74E-02 1.74E-02 1.00E+00 

 

Solving for Photon Probability With [1/(kψr)] Sin(kψr) 

The photon’s Probabilistic Wave Function ψP (50) can be deconstructed into the space wave χP(51), and the envelope 

probability density function φP(52) with the total probability density PψP because it is derived from the Airy Pattern, some of 

the properties of the Airy Pattern function ψP are borrowed from Solving for Airy Pattern Probability with [1/(kλr)] sin(kλr). 

Therefore, what needs to be determined first is kP. and rψP 

 
1

P P P P P

P P

sin k r
k r

  
 

   
 

 (50) 

 

 P P Psin k r   (51) 

 

1
P

P Pk r


 
  
 

 (52) 
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To determine the lower bound rPU 

For rP ≥ rPL gives, 

 

       
 

 

  

3 5 7 9 2 1

11
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3.3! 5.5! 7.7! 9.9! 2 1 2 1 !

n

nP P P P P P P P P P

P P

P

k r k r k r k r k r
P r

k n n





 

        
   

 (53) 

 

Because the series converges very quickly as kPrP, and assuming that the form of (39) is still valid 

 

P
P

P

r
P r

k
    (54) 

 

Where the total probability density isPψP or, 

 

PL Pr k r  (55) 

 

To determine the upper bound rPU 

 

       
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




 

        
   

 (56) 

 

Because the series converges very quickly as kPrP, and assuming that the form of (39) is still valid, and as rPL≈0 

 

 AU AL PU
P

P P

r r r
P

k k



   (57) 

 

Therefore, the photon probability PP along a radius rP,  

 

 
 

1

1 1
P P

P PP
P P P

PUP PU P

P

sin k r
k r

P sin k r
rP r r

k




 
 
 

    (58) 

 

Since the maximum probability must be 1 for any value of rP, when rP=rPLfrom (58) the coefficient of the sine function be 1, 

 

1 1
1

PU PLr r
  (59) 
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Therefore, 

1
PU

P

r
k r

  (60) 

 

That is, 

1
P PL P PU

P

k r r r r
k r





     (61) 

 

From (58) a necessary condition for maximum probability to be 1 when rP=rPL is that the sine function must be 1, too. 

Therefore, 

 

2
P PLk r


  (62) 

 

Or, from (12), 

 

2 2
P

PL P

k
r k r

 
   (63) 

And, 

 

1

2
Pk

r


  (64) 

Or, 

 

1 2
PU

P

r
k r r 

   (65) 

 

2
PL P

r
r k r






   (66) 

 

The total probability density DψP of the photon disc is the radial probability density PψP rotated from 0 to 2π radians. By (61) 

and (67), 

 

  22 2PU PL PU
P

P P

rr r r
P

k k r





  


     (67) 
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     
22

22

0

1 1 2 4
2 0

2 2

PU

PL

r

P P P P P

r

D dr P d



    
 

 
     

 
   (68) 

 

That is, the total photon probability density PψP along any orthogonal radius is a constant 2/π, and the total disc probability 

density DψP is also a constant 4/π. 

 

Airy Pattern probability 

From the perspective of probability control, there are some challenges that need to be solved. First challenge is, how to 

control probability of localization? From (35) it is clear that the probabilistic envelope function φA is a function of photon 

frequency ν and photon constant kA or,  

 

 θ /A A Asin c w k    (69) 

 

That is, the probabilistic envelope function φA is an inverse function of angle θ from axis or given a pinhole to opaque 

distance dA and the orthogonal radius rA on the opaque screen,  

 

θ /A Atan r d  (70) 

 

From (34) 

 (71) 

Or 

 

 1/A Aasin   (72) 

 

Or it is the space wave χA oscillations that causes the changes in the probabilistic envelope function φA. Without experimental 

evidence, it is difficult to propose correctly how the space wave χA can be altered. However, some direction can be inferred as 

to how to conduct these experiments. Since it is the [15] electromagnetic wavelength λem that determines the space wave χA 

wavelength λχ (or the other way around), 

 

em   (73) 

 

Therefore, electromagnetic fields can be used to alter the space wave χA and therefore, alter the probabilistic envelope 

function φA. By rewriting (69) in terms of photon energy hν,  

 

 θ /A A Asin hc h w k    (74) 
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One notes as photon energy increases, its wavelength decreases and by (72) so does the space wave χA wavelength λχ. This 

causes the normalized probabilities to occupy a smaller space.  

 

Another approach would be derived from FIG. 1. [15], which shows that the peak intensity (solid red) function is capped by 

the probabilistic envelope function φA and oscillates with the space wave χA. Assuming field commutative symmetry [10,13] 

then the presence of any two of the fields would result in the third.  

 

Thus by (74) peak electric or magnetic field strength is capped by probabilistic envelope function φA. To keep it simple, if the 

space wave χA was flat then, the electric and magnetic field strength would be (at least approximately) linearly dependent on 

the envelope function φA. Therefore, by field commutative symmetry the electric or magnetic fields would alter probabilities,  

 

/A E A M Ak E k B     (75) 

 

Where kE and kM are the respective electric and magnetic field constants, and the utility of using √ε and √μ
-1

 will become 

evident. 

 

For the Airy Pattern formed by the rotation of the radial path about the axis of the pin hole, the total spatial probability 

distribution must sum to 1, at or in the field of interaction FI irrespective of this field’s shape. This field of interaction FI is 

determined on a case by case basis. It is the area A of the plane as in the screen for Airy Pattern experiments (76) and the 

volume V of space (77) for 3-dimensional chemical reactions.  

 

2

,

0

Ar

I A A AF dr   (76) 

 

, ,

0

Ad

I V I AF F dz   (77) 

 

Where rA is from 0 or from the axis of propagation through the aperture, to the radial distance rAU on the screen. The 

normalized probability PNA of a photon localizing at the disc with radial coordinates (θ,r) on a screen a distance dA, using the 

Probabilistic Wave Function ψA(θ,r) PψA, it would take the form, from (39), 

 

A
A

r
P r

k
 



   (78) 

 

Where, 
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1

2
A

r
E





 
  (79) 

 

, ,

A

NA

I A I A

P r
P

F F

 
   (80) 

 

Field commutative symmetry is borrowed from (http://mathworld.wolfram.com/) the mathematical definition of 

commutative, where under certain conditions give the same result independently of the order of the elements. For example 

addition, multiplication, algebra, diagrams, monoids and rings are or can be commutative. Thus, with respect to fields, field 

commutative symmetry is defined as the interchangeability of orthogonal fields such that when two orthogonal fields are 

required to produce a third orthogonal field, it does not matter which two is initiated, the third field produced is the remaining 

field, when all necessary factors are present. For example, a moving (velocity v is present) electric field E would evidence a 

magnetic field B. Similarly moving (velocity v is present) magnetic field B would evidence an electric field E. And an 

oscillating electromagnetic field would evidence velocity. Therefore, it does not matter the order of the fields selected, all 

three will be present. Thus, the velocity-electric-magnetic field example proves that Nature demonstrates field commutative 

symmetry. This field commutative symmetry could be applied in other relationships. 

 

By (48),  

 

     
2 2
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,

AU AU

AL AL

r r

I A A A E A E A AU AL

r r

F dr k E k E r r          (81) 

 

Since, rAL≈0, 

 

 
2

,I A E A AUF k E r   (82) 

 

 
2NA

E A AU

r
P

k E r



 
  (83) 

 

From (75) the lower rAL and upper rAU bounds are given by, 

 

1
AL A AUk r r r r

k r
 

 

     (84) 

 

The lower boundrAL implies that intensity cannot reach infinity. 
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 
2

1
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E A

P

k k E 
  (85) 

 

From (36) 
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2

A
NA

A
E A

d
P

wk E



 

 
  

 
 (86) 

 

That is, since,  

 As electric field, maximum amplitude EA increases, probability decreases and the photon is less likely to localize. 

For optical fiber laser amplifiers
i
, the pump wavelength supplies energy to boost the signal wavelength energy and 

much work is required to explore this avenue further. 

 As wavelength λ decreases probability decreases and the photon is less likely to localize, and the photon is more  

1
http://www.feynmanlectures.caltech.edu/III_16.html 

likely to pass through an opaque screen or more likely to behave like a particle rather than a wave. 

 

To determine kE, consider that the total probability along any radius rA=1, assuming that kE is a constant, 
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   (87) 

 

By (82), and since rAL≈0, 
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Or, 
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w k rE  
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By (41), 
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Similarly,  

 

1A
M

AA

d
k

w rB 








 
  
   
  
 

 (91) 

 

Therefore, by (86), (90) can be rewritten as, (Appendix A, Numerical Modeling Tables), 

 (92) 

And by (52), 
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 (93) 

 

Similarly, 
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A
NA
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w
P

Bd



 
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 (94) 

 

That is, the probability of localizing to form an Airy Pattern is  

 An inverse function of the electric EA or magnetic BA field amplitude.  

 A function of the ratio of the pinhole width wA and distance from screen dA. 

 Not dependent on the photon wavelength λ. 

 The surprising inference is that while photon probability is altered by its electric EA and magnetic BA field strength 

(93) and (94), the photon energy EP=hν is not. Therefore, one infers that the photon energy is derived from the 

oscillation of the transverse wave’s non-zero electric EA and magnetic BA fields amplitudes and not their specific 

amplitudes. 

 This raises the question, is the observed oscillation due to the phase and orientation of the electromagnetic wave 

arriving at the pinhole? This is a very likely mechanism and could be an example of the observer altering the 

observation with a pin hole. To explore this one first has to add the effect of external electric field due to the pin 

hole. 
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Explaining the Airy Pattern Intensity 

To answer why the Airy Pattern intensity in non-linear (38) while the photon probability on this Airy Pattern is a constant 

(93) and (94), this analysis deconstructs the photon into it individual parts, amplitudes EA and BA and phase α. 

A pin hole, after all, is a circular electric field of magnitude EH along any radius, formed by electron shells of the material 

surrounding the pin hole. Therefore, from (93), the photon probability PEA in the presence of an external electric field EH is, 

 

 

1

2

A
EA

A H A

w
P

d E E

 
  

 
 (95) 

 

To evaluate, in the presence of the pin hole external electric field EH, how photon phase α arrival alters probability PNA, the 

varying electric field amplitude EE was set to EE such that,  

 

 sinE AE E   (96) 

 

And the phase altered probability PαA of an individual photon using (95) is given by, (See Appendix A, Numerical Modeling 

Tables), 

  
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A
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A H A

w
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d E E


 

 
  
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 (97) 

 

Therefore, logically, 

 A minimum interference with the pin hole’s electric field EH occurs when the phase α=0°, and sin(α)=0. The photon 

passes straight through the pin hole as if the pin hole did not exist as its electric field is zero. Therefore, rA=rAL. 

 This suggests that the more interference with the pin hole the greater the phase of the electric field. 

 Therefore, one could propose that α=90°, when the deflection is maximum, or rA=rAU (FIG. 2). 

 For monochromatic photons, the radial deflection θ, on the Airy Pattern is monotonic with respect to α, 

 

    sinsin f   (98) 

 

Proposing a monotonic function (99) to determine the function fαθ, 
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r
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d r
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
 (99) 

 

When α=90  , and the upper bound radial displacement rAU on the Airy Pattern (FIG. 2), gives, 
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FIG. 2. Photon probability projected on to the airy pattern. 
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Or, 
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Substituting back into (99) and resolving for rA gives, 
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Since rAU >> dA, 
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And, 
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Or, 

 

   tan tan   (106) 

 

or, 

 

   (107) 

 

That is, the radial θ spread is entirely due to the photon phase α arrivals, and (97) is the correct phase altered probability P αA 

of an individual photon. (97) also, accounts for the non-linear decrease in intensity along the radius, i.e. it explains the 

coefficient term space wave χA (34) in the Airy Pattern ψA (33). If (107) can be experimentally verified, it can significantly 

reduce diffraction in optical instruments by using photons of a single phase (e.g. lasers), and is a means to filtering photons 

by their phase. 

 

The Airy Pattern ψA (33) probabilities display the decreasing oscillations. Controlling for phase α arrivals shows that 

probabilities are altered by phase α arrival and are evidenced as decreasing strength of the probabilities along a radius rA.  

 

Just as the amplitude of the electric field EA at the pin hole affects the radial displacement θ, the amplitude of this electric 

field EA will alter the probability of localization at the radial distance rA. That is, if the photon travels along the hypotenuse 

formed by dA and rA, the phase of the photon βA at arrival is what needs to be determined. The number of cycle nA along the 

hypotenuse is given by,  
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  (108) 

 

Adding the phase α start of the photon at the pin hole, the phase γA along the hypotenuse is given by, 
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Therefore, phase γA modified probability PβA is a cosine function as intensity is a maximum when rA=0 and this term must 

range between 0 and ± 1. 

 

FIG. 3. Airy Disc α and Probability of cos(α+β). 
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 (110) 

 

Testing numerically, shows that (110) is not the correct behavior as this gives what appears to be random scramble of 

photons compared to the Airy Pattern. Other variations of (110) were tested with no joy. This suggests that the photon does 

not travel along the hypotenuse, and that the Airy Pattern ψA (33) oscillations are a much more sophisticated phenomenon 

(FIG. 3).  

Since probabilities are a function of the photon’s electric field maximum amplitude EA (95) and per the proposed experiment 

in §11, what if this electric field strength dilutes with the radial distance rA? A possible dilution model is the total probability 

P αA over a disc formed by rAL should be equal to the total probability P rA over a disc formed by rA, thus, 
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Or, 

 

  

2 2

1

2 sin

AL A AL
rA A

A A AH A

r w r
P P

r d rE E


 

     
      

     
 (112) 
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This, too, is not how Nature works. Reviewing (33) suggests that only the displacement rA along the radius is significant. The 

cosine term in (110) was replaced with the number of wavelengths along the radius, and taking into account the photon phase 

α to give, 
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 (113) 

 

This gives and excellent fit (FIG. 4), and suggests that any differences between Airy Pattern ψA (33) and the corresponding 

probability function PrA (113) are due to experimental error. Comparing (113) with (110) suggests that the photon localizes 

orthogonally and does not travel along the hypotenuse. 

Noting the β term in (113) and by (110), 

 

 

FIG. 4. Airy Disc Intensity and Probability. 
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Or,  

 

 rA A wP P cos n tan        (115) 

 

Where nr is the number of wavelengths λ across the Airy Pattern at radius rA, nw the diameter of the pin hole in wavelengths, 

and nd the distance to the Airy Pattern in wavelengths. However, from (89) the geometry of (116) shows that rh is the 

horizontal distance in front of the pin hole. 
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 h Ar w tan      (116) 

 

 Ah
h

w tanr
n



 
   (117) 

And therefore, the number of wavelengths nh of this distance rh represents a second phase shift forward, introduced by the pin 

hole of width wA, such that this 

 

hn   (118) 

 

And, 

 

   rA A A hP P cos P cos n         (119) 

 

That is, photon phase α causes two shifts on the Airy Pattern such that, 

 An angular shift θ=α away from the pin hole axis. 

 The pin hole causes forward or backward shift of (the non-integer part of) β=nh wavelengths, equivalent to the 

photon moving forward or backward from the pin hole.  

 The photon does not travel along the hypotenuse but localizes orthogonally along the radius rA. 

 Localization preserves the total phase shifts α+β.  

 The Airy Pattern
ii
 can thus be explained in terms of photon phase and photon wavelength, and significantly raises 

the possibility that experiment 11.2 will be vindicated. 

 

Airy Pattern Applications 

To test the validity of this, paper photon probability thesis, some experimental tests/applications are suggested. 

Test 1: The first is refractive index. Since EH is due to the external material of the pin hole, one could propose that the 

maximum dispersion occurs at rAU1 and rAU2 due to materials 1 and 2, having electric fields EH1 and EH2, and wavelengths λ1 

and λ2, respectively, is the refractive index, n1,2.  

From (36) and (84),  
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For the same light photon of frequency ν, and respective velocities v1 (=λ1ν) and v2 (=λ2ν), gives 
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This is the correct definition of the refractive index n1,2, thereby confirming the validity of these Airy Pattern calculations. 

Test 1 passed.  

 

Test 2: The second application is to determine electric field amplitudes. Therefore, considering the ratio R1,2 of the Airy 

Pattern probabilities, from (97), (107), (114) and (119),  
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(122) 
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 (123) 

Since the trigonometric function have measurable parameters, these can be replaced as follows, 
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Or,  
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for the same medium, but say for the second ring at rA1 and fourth ring at rA2  
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Or 
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Therefore, it is possible to determine the maximum electric field amplitudes from a series of experiments. The key would be 

to measure the ratio R1,2 sufficiently accurately. Test 2, proposes a new demonstrable experiment. 

 

Test 3: Therefore, the third experiment, given a photon source, is to measure the average space wA between molecules, by 

replacing the pin hole width wA1 in air with a thin sheet of material 2 whose measurement of spaces between molecules wA2 

is of interest, such that its thickness <πnh (93) so that it behaves like a pin hole. From (121) and (122),  

 

  
  

 

 

1
1 1

1 2 1

1,2

1 1 2
2 2

2

sin

sin

A

H A

H A A

w
cos tan

E E
R

E E w
cos tan

  
 


  



 
   

  
 

 

 (128) 

 

And assuming, in air EH1≈0,  
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And from (116), and (120), 
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Solving with the known parameters gives average wA2. Test 3 proposes a new demonstrable experiment. 

 

Test 4: Per (107) the phase shift of photons arriving from a pin hole is a function of its orthogonal displacement from the pin 

hole axis of propagation. Test 4 proposes a new demonstrable experiment. 

 

Test 5: A single phase light beam (e.g. laser) at phase shift α=0° should provide a sharper image than regular diffused light. 

Test 5 proposes a new demonstrable experiment. 

 

Test 6: Similarly, using this photon probability thesis, it is suggested that it is possible to improve photon detectors by 

altering the photon’s probability distribution using an external electric field EH required to reduce the photon probability’s 

upper bound radius rAU to match the radius of the detectors opening. Test 6 proposes a new demonstrable experiment. 

 

 Edge Probability Transformations 

Given that the Probabilistic Wave Function ψP (50) is not integrable, the integral of the Probabilistic Wave Function ψP (50) 

does not converge, and therefore the question how does a non-convergent physical process generate the convergent Airy 
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Pattern? Assuming that the photon’s probability function is essentially similar to the Airy Pattern, one can use the Airy 

Pattern to reconstruct the photon’s probability function in parts.  

 

One can review the coefficient part of the trigonometric function, PαA (97), and PrA (115). These are the projections of the 

photon probabilities. The former is the pin hole altered photon probabilities at the pin hole, and the latter is the resulting 

phase shift photon probabilities at the Airy Pattern screen. Therefore, what remains are PEA (95) and PNA (93). (95) is the 

photon probability in an external electric field, and one is left with PNA (93) which is constant along the photon radius rP, and 

still a function of the Airy Pattern setup parameters, therefore not quite usable as is.  
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Therefore, using the form of the Airy Pattern function as the basis the solution to the Probabilistic Wave Function ψP (132) is, 
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And by (110) and (112) 
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That is, photon probability is a function of the square root of its wavelength λ. Therefore, the true probabilistic transformation 

∇P,A caused by the pin hole or for that matter any edge on the photon probability is, (FIG. 5) 

 

rA ,P P AP P   (140) 

 

Or, from (95), (117) and (145), 
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FIG. 5. Particle Functions versus Radius. Note, some scaling added to display all curves on the same graph. 
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Photon Probability Applications 

A review of (139) shows that in free space the photon probability is very stable, and therefore an edge transformation ∇PA 

(140) and (141) is required. Considering (142) one notes that the electric field component could be altered in a manner 

similar to (95), at least approximately, to introduce the external electric field EH into the photon probability (139). Thus,  
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Using the vector form of the photon’s electric field EA shows that the maximum effect of the external field occurs when this 

field is parallel or anti-parallel to the photon’s and therefore, a means to filtering photon by their electric field orientation.  

 

Thus, by (142), when two photons are bound by some process one could propose that the external electric field EH is that of 

the other photon, and assuming both photons have the same electric field EA,  
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And therefore, in general with n bound photons, 

 

 

 1 1

2

AP
P P

P PA

n E
P sin r

rn E






 
 
 
 

 (144) 

 

That there is a phase shift in the set of bound photons and a narrowing of the collective photon probabilities by a factor of √n. 

This shows that, the edge transformation ∇PA causes the photon probability to phase shift and change magnitude, which is 

experimentally verifiable. Also, note that the change in the electric permittivity ε will cause a phase shift and a change in the 

amplitude. Finally, probabilities are affected by velocity and accelerations as the photon wavelength λ undergoes Doppler and 

gravitational transformations. Gravitational transformations have the additional effects of altering the photon radius rP. 

 

Proposed Experiments 

This paper proposes 4 new experiments that photonics researchers can conduct to confirm or disprove the Probabilistic Wave 

Function ψP (132) and probabilistic control hypothesis presented in this paper. Since, the basic structure of a photon consists 

of Probabilistic Wave Function ψP (132), the space wave χP (133), and the envelope probability density function φP (134), one 

can propose tests for the existence of the space wave χP, and the properties of subspace. 

 

Test for altering the probability function  

FIG. 6. depicts a possible Airy Pattern experimental set up to prove (142). On the left side is a regular Airy Pattern 

experiment.  
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On the right side is the corresponding Airy Pattern experiment with the addition that the photons have to pass through an 

electrical field with field lines in a vertical orientation. By (142) it is opined that vertically oriented photon electrical field 

would be more influenced than horizontally oriented photon electrical field. There by resulting in vertical deformation with 

no horizontal deformation. Ultimately, only experiments can confirm or disprove this thesis (142) and provide empirical date 

to develop probability deformations in the presence of electric and/or magnetic fields. Note, that (153) provides some 

guidance as the external field strength required in the experiments. 

 

The next challenge is navigating photons. That is, how to control where to localize. Just as field forces [12,13] require 

vectoring and modulation, there are two parts to this challenge, (i) vectoring, controlling the direction of localization, and (ii) 

modulation, controlling the distance to localization. Equation (142) suggests that a spatial gradient of the electric and 

magnetic fields and the orientation of this gradient could be an approach to vectoring and modulation experiments. This 

would require a much more sophisticated understanding of subspace. These challenges are left to future research. 

 

 

FIG. 6. Suggested photon probability deformation in the presence of an electric field. 

 

Test for space wave particle design that is independent of mass  

This relies on the assumption that both mass-based and massless particles consist of this same structure, (132), (133) and 

(134) with differing coefficients. Would a double slit experiment, with electrons passing through one slit and photons passing 

through the other slit, both with similar de Broglie wavelengths, produce interference patterns? 

 

Test for space wave χp as the source of self -interference 

Can a space wave χP regenerate as two new space waves χPL and χPR? In single photon, double slit experiments, the particle’s 

path is usually midway between the slits. Shifting this position laterally or sideways, with respect to the slits, should 

demonstrate a phase shifted interference pattern that is governed by this lateral shift. The resulting interference pattern should 

be governed by the radial displacements rPL and rPR of the double slits from the photon’s axis of motion. Noting, too, that the 

wavelengths at the respective left and right are changed per (133).  

 

Since the particle’s axis of propagation is between the double slits, the inference is that the particle does not travel through 

the barrier between slits because the slits exists. The photon barrier between the double slits should confirm this. Thus, a 

photon barrier is defined as an obstruction that prevents the formation of the space waves χPL and χPR (not the particle’s χP) in 

the vicinity of the photon’s envelope probability density function φP (134). 

 

Measuring the Amplitude AP of the Space Wave χP  
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If the space wave χP has a measurable amplitude AP, then a bidirectional double slit experiment could be used to measure this 

amplitude. FIG. 7. shows such a set-up. 

 

 

 

FIG. 7. Measuring the space wave amplitude AP. 

The reasoning behind this experiment is that the wave interference patterns only occur when the two space waves χPL on the 

left and χPR on the right, are in contact with each other. Therefore, starting from far, as the distance dS between the left and 

right screens is decreased, the Airy Pattern should emerge when the left and right space waves χPL and χPR amplitudes 

coincide. This distance dS at emergence, is the space waves’ amplitude AP. 

 

Conclusion 

This paper proposes a new model for a photon’s wave function and how this wave function is modified/transformed in the 

presence of external objects or edges. The purpose is to provide research directions that will facilitate new types of photon 

collection and loss reduction technologies. Thus, many new experiments are provided. As it has been shown that probabilities 

are functions of electric and magnetic fields, a mechanism for deforming probabilities is proposed. Therefore, probabilities 

can be controlled.  
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