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Introduction 

The entropic formulation of Van’t Hoff’s law was discovered [1], by this author a few years ago and in the subsequent years 

its interpretation and significance was discussed in detail elsewhere [2,3]. The aim of present paper is to bring together both 

the mathematical and theoretical aspects of this law for the sake of convenience of understanding and application. We thus 

begin, in the next section, by first introducing the conventional Van’t Hoff equation and show, in particular, how it is usually 

derived by making use of the Gibbs-Helmholtz equation and the Van’t Hoff isotherm [4-7]. We then, in a subsequent section, 

derive an alternative formulation of the law in terms of entropy. We do this by taking a well-known, and very important, result 

from the Second law of thermodynamics concerning free energy and substituting it in the Gibbs-Helmholtz equation [1]. 

Finally, we present an interpretation of our new Van’t Hoff equation and also discuss its significance. 

The conventional Van’t Hoff’s law 

A crucially important result in chemical thermodynamics is the Gibbs-Helmholtz equation [4], usually expressed, at a 

constant standard pressure of one bar, as 

𝜕(∆𝑟𝐺∘/𝑇)

𝜕𝑇
= −

∆𝑟𝐻∘

𝑇2
                    (1) 

The conventional expression for Van’t Hoff’s law can be derived from this equation if we take the Van’t Hoff isotherm, ∆𝑟𝐺∘ =

−𝑅𝑇𝑙𝑛𝐾 and substitute it on its right hand side. This substitution then results in the following expression 

𝑑𝑙𝑛𝐾 =
∆𝑟𝐻∘

𝑅𝑇2
𝑑𝑇                             (2) 

One can also integrate equation (2) between the initial and final states of the system to yield the following expression 

ln
𝐾(𝑇𝑓)

𝐾(𝑇𝑖)
= ∫

∆𝑟𝐻∘

𝑅𝑇2
𝑑𝑇

𝑇𝑓

𝑇𝑖

                (3) 
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From which the usual expression for Van’t Hoff’s law is easily obtained by treating the enthalpy as constant for the temperature 

range of interest [4]. 

ln
𝐾(𝑇𝑓)

𝐾(𝑇𝑖)
=

∆𝑟𝐻∘

𝑅
[

1

𝑇𝑖

−
1

𝑇𝑓

]       (4) 

The Van’t Hoff equation (4) is commonly employed to determine the variation of an equilibrium constant 𝐾 with 

temperature [4-7]. This effect of temperature on the equilibrium constant is usually understood through its effect on the standard 

Gibbs energy of reaction ∆𝑟𝐺∘. In other words, any change in 𝐾 with 𝑇 is perceived as a change in the value of the standard 

Gibbs energy of reaction ∆𝑟𝐺∘ [4].  Furthermore, the dependence of 𝐾 on temperature is determined by the sign of ∆𝑟𝐻∘and 

the Van’t Hoff equation provides the theoretical basis of this dependence. However, the effect of temperature on equilibria has 

also been discussed in terms of the importance of relative magnitudes of the entropy changes of the system and its immediate 

surroundings [4] by employing the following relation, 

∆𝑟𝐺∘ = ∆𝑟𝐻∘ − 𝑇∆𝑟𝑆∘       (5) 

It is with this interpretation in mind that the Van’t Hoff equation was formulated in terms of entropy [1,2] to yield an expression 

that highlights in a more direct manner the role that total entropy change plays in determining the direction of the reaction at 

equilibrium [1]. 

The entropy formulation of Van’t Hoff’s law 

If we multiply both sides of equation (5) by −
1

𝑇
 we obtain 

−
∆𝑟𝐺∘

𝑇
= −

∆𝑟𝐻∘

𝑇
+ ∆𝑟𝑆∘       (6) 

We identify the first term on the right hand side of above equation with the entropy change of the surroundings [4] and denote 

it by ∆𝑟𝑆𝑠𝑢𝑟 , that is 

∆𝑟𝑆𝑠𝑢𝑟 = −
∆𝑟𝐻∘

𝑇
 

and realize that since ∆𝑆𝑡𝑜𝑡 = ∆𝑆𝑠𝑦𝑠 + ∆𝑆𝑠𝑢𝑟 , we obtain 

∆𝑟𝐺∘ = −𝑇∆𝑟𝑆𝑡𝑜𝑡                 (7) 

Here ∆𝑟𝑆𝑡𝑜𝑡 is the total entropy change that the reaction generates and 𝑇 denotes the absolute temperature. In order to fully 

appreciate the role of entropy in determining the direction of reaction process at equilibrium we now substitute Eq. (7) into the 

Gibbs-Helmholtz equation given in the beginning and obtain 

𝜕∆𝑟𝑆𝑡𝑜𝑡

𝜕𝑇
=

∆𝑟𝐻∘

𝑇2
              (8) 

Equation (8) is the Van’t Hoff’s law in terms of entropy. It can be directly integrated between two specified initial and final 

states of the system to give 

∆𝑟𝑆𝑡𝑜𝑡(𝑇𝑓) = ∆𝑟𝑆𝑡𝑜𝑡(𝑇𝑖) + ∫
∆𝑟𝐻∘

𝑇2
𝑑𝑇

𝑇𝑓

𝑇𝑖

      (9) 

One can carry out the integration in above equation further provided one knows how the enthalpy of the system varies with 

temperature [4]. If one uses the approximation that the standard reaction enthalpy is independent of temperature, a valid 

approximation for at least small ranges of temperature [4], then Eq. (9) can be easily integrated to give 

∆𝑟𝑆𝑡𝑜𝑡(𝑇𝑓) = ∆𝑟𝑆𝑡𝑜𝑡(𝑇𝑖) + ∆𝑟𝐻∘ [
1

𝑇𝑖

−
1

𝑇𝑓

]        (10) 
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Both equations (9) and (10) are formulations of Van't Hoff's law in terms of entropy and their significance is discussed in the 

next section. 

Significance of the entropy formulation 

     As has been mentioned in the previous section, the effect of temperature on equilibria has also been discussed [4], in a more 

general manner, in terms of the importance of relative magnitudes of the entropy changes of the system and its surroundings 

by employing equation (5). Thus, when the reaction proceeds with the evolution of energy as heat the term −
∆𝑟𝐻∘

𝑇
 will contribute 

a positive entropy change to the surroundings. This will shift the equilibrium in the forward direction and favor the formation 

of products. When the temperature is lowered this contribution due to −
∆𝑟𝐻∘

𝑇
 also becomes fairly large. For a decrease in 

temperature the magnitude of −
∆𝑟𝐻∘

𝑇
 term also decreases. At higher temperatures the extent of decrease is such that the 

importance of the increasing entropy of the surroundings has a less significant role to play. Consequently, the equilibrium in 

such cases lies less towards the product side and the value of equilibrium constant decreases. For a reaction that proceeds with 

the absorption of energy as heat the main contributing factor is increase in entropy of the system due to the energy as heat 

soaked up from the surroundings. The importance of the unfavorable entropy change of the surroundings ∆𝑟𝑆𝑠𝑢𝑟 = −
∆𝑟𝐻∘

𝑇
 gets 

reduced when the temperature is increased and the reaction shifts towards the product side. Since entropy is a fundamental 

property of the universe, the increase in entropy is a more fundamental origin of the behavior equilibria towards temperature. 

It is therefore desirable to have a mathematical expression underlying this entropy based explanation of equilibria. As has been 

explicitly demonstrated above, it is possible to derive an alternative formula for the Van’t Hoff equation in terms of entropy 

which provides a theoretical basis for the entropy-based explanation just as the conventional formulation provides the 

theoretical underpinnings of the explanation based on the concept of free energy. 

Discussion 

A very useful expression in chemistry to quantitatively determine the variation of equilibrium constant 𝐾 with temperature is 

the Van't Hoff's law or the so-called Van't Hoff equation usually represented by Eq. (4). In essence Eq. (4) says that knowing 

the value of equilibrium constant at one temperature one can determine its value at some other temperature provided one knows 

the value of standard enthalpy change of the reaction process under consideration. The physical basis behind the variation of 

equilibrium constant with temperature is usually discussed in terms of the effect of 𝑇 on the standard reaction Gibbs 

energy ∆𝑟𝐺∘. The actual dependence of 𝐾 on temperature depends on the sign of ∆𝑟𝐻∘ and the van’t Hoff equation provides a 

theoretical basis of this dependence. However, another more general way to look at the effect is in terms of the total entropy 

change ∆𝑟𝑆𝑡𝑜𝑡 that the reaction system causes [4]. In other words, one takes into consideration the importance of the relative 

entropy changes of the reaction system and its immediate surroundings. It thus becomes desirable to have a theoretical 

expression underlying this total entropy-based explanation. It turns out that it is possible to derive a form of Van’t Hoff equation 

in terms of total entropy and which one may call the total entropy equation. To this end one can use the Gibbs-Helmholtz 

equation and the definition of Gibbs energy to arrive at a result expressed by Eq. (10). The effect of temperature on equilibria 

of exothermic and endothermic is then explained in a more fundamental and general way by this new Van’t Hoff type equation. 

For reactions that are accompanied by evolution of energy as heat (exothermic reactions), Eq. (10) predicts a decrease in total 

entropy ∆𝑟𝑆𝑡𝑜𝑡 as one increases the temperature. Hence the favorable condition for an exothermic reaction will be a decrease 

in temperature. For reactions that are accompanied by absorption of energy as heat (endothermic reactions), Eq. (10) predicts 

an increase in total entropy ∆𝑟𝑆𝑡𝑜𝑡 as the temperature is increased. Hence the favorable condition for an endothermic reaction 

will be an increase of temperature. 
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Conclusion 

An explanation of the behavior of equilibria towards temperature for both exothermic and endothermic reactions relies on the 

importance of the relative entropy changes of the reaction system and its surroundings; in other words, on the total entropy 

change. It thus becomes desirable to have a theoretical expression underlying this explanation. It is possible to derive an 

expression for Van’t Hoff’s law, in terms of total entropy change, that can provide a theoretical basis for the stated explanation 

just as conventional Van’t Hoff’s law provides a theoretical basis for an explanation based on the concept of free energy. 
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