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Abstract 
 
Set theory is a formalization of the existence and fundamental properties of mathematical objects as collections of elements 

and/or elements included in collections. Its formulation is so basic and comprehensive that it has been postulated as the 

foundation of all mathematics. Perhaps, the major achievement of set theory is that, after being criticized by many reputable  

mathematicians and philosophers since its appearance, it is now commonly accepted as the primary explanation of the most 

basic components of mathematics: Numbers; and not only the numbers we have needed or we may ever need but all the 

numbers that could potentially exist. In set theory, an infinite sequence of numbers exists not as the mere projection of a 

construction algorithm but as a complete and self-identical mathematical object: A set. In set theory the words infinite and 

infinity do not refer to the property of growing endlessly (potential infinity) but to a definite magnitude; a number; the actual 

infinity. As a result of such a conception, set theory arrives at the conclusion that there exist infinitely many infinities, each 

one with a different value. The set of postulates, proofs and theorems used to justify the existence of such infinities is 

commonly known as transfinite set-theory. 

 

The first part of this work shows how some of the properties and theorems applied to infinite sets, in set theory, necessarily 

lead to internal and fundamental contradictions under classical logic, even when the idea of actual infinity is accepted. 

Throughout the second part, motivated by the necessity of an alternative to transfinite set-theory, due to the incapacity of 

such a theory to explain some of the findings shown in the first part (especially the proof of the existence of as many rational 

as irrational numbers), the author develops a theory to provide a better understanding of infinite sequences of numbers. 
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Introduction 
 

Set theory is a formalization of the existence and fundamental properties of mathematical objects as collections of elements 

and/or elements included in collections. Its formulation is so basic and comprehensive that it has been postulated as the 

foundation of all mathematics. The invention of set theory is commonly attributed to George Cantor (1845-1918), a 

mathematician who was born in Saint Petersburg, Russian empire and acquired most of his academic formation in Germany, 

where he also developed most of his career. Perhaps, the major achievement of set theory is that, after being criticized by many 

reputable mathematicians and philosophers since its appearance, it is now commonly accepted as the primary explanation of the 

most basic components of mathematics: Numbers; and not only the numbers we have needed or we may ever need but all the 

numbers that could potentially exist. In set theory, an infinite sequence of numbers exists not as the mere projection of a 

construction algorithm but as a complete and self-identical mathematical object: A set. 
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Some fundamental properties of sets 

 

Set theory postulates some properties that are inherent to all sets, including infinite sets. Two of the most important properties of 

sets are: 

Cardinality: It is the property of possessing a determined number of elements. If 𝐴 is a set whose elements are {𝑥, 𝑦, 𝑧}, it is 

said that the cardinality of 𝐴 is 3 or: 

|A|=3. 

Power set: It is the property of implying the existence of a set of all the subsets contained in a set. If 𝐴 is a set whose elements 

are {𝑥, 𝑦, 𝑧}, then there exists a set 𝑃(𝐴), called the power set of 𝐴, whose elements are: 

{{∅}, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}, {𝑥, 𝑧}, {𝑦, 𝑧}, {𝑥, 𝑦, 𝑧}} and it is said that its cardinality is 8 or |𝑃(𝐴)|=8. 

 

Some fundamental theorems of Set-Theory 

 

By the acceptance of the mentioned properties, two fundamental theorems are derived: 

Cantor-Schroder-Bernstein Theorem: Which states that, if there exist injective functions 𝑓∶ A→B and 𝑔∶ B→A between the 

sets A and B, then there exists a bijective function ℎ ∶ A→B. In terms of the cardinality of the two sets, this classically implies 

that if |A| ≤|B| and |B| ≤ |A|, then |A| = |B|; that is, A and B are equipotent [1]. 

Cantor’s theorem: Which states that, for any set A, the set of all subsets of A, the power set of A, has a strictly greater 

cardinality than A itself [2]. 

 

Conception of infinity in set theory 

 

The validity of the properties and theorems listed above is almost evident for any finite set but it is problematic when it is 

accepted for infinite sets as well. However, since infinite sets are seen as completed and self-identical entities in set-theory, there 

is nothing fundamentally different between them and finite sets. That is because in set theory the words infinite and infinity do 

not refer to the property of growing endlessly (potential infinity) but to a definite magnitude; a number; the actual infinity. As a 

result of such a conception, as it will be shown further on in this work, set theory arrives at the conclusion that there exist 

infinitely many infinities, each one with a different value. The set of postulates, proofs and theorems used to justify the existence 

of such infinities is commonly known as transfinite set-theory. 

In the following section, I will show how the above properties and theorems applied to infinite sets necessarily lead to internal 

and fundamental contradictions under classical logic, even when the idea of actual infinity is accepted [3]. 

 

Cantor’s actual infinity 

 

The main-stream conception of infinite sets today comes from the work of Georg Cantor. One of Cantor’s main objectives was to 

give a totalizing character to his Set Theory. To achieve that, he needed to state that every mathematical object could be 

conceived as a set and has, at least, the same basic properties shared by all sets; then, infinite sequences of numbers must be sets 

and they must have the properties of cardinality and power set, which will consequently lead to the existence of infinite different 

infinities. Cantor was a strong believer in the existence and consistency the actual infinity. Contrary to the most accepted notion 

of infinity in the history of mathematics and philosophy until the rise of set theory and still now for some, which is that infinity is 

not a number nor a quantity but just the property held by an entity of having no end, no limit, no term, no finish, also called 

potential infinity, Cantor defended the idea of actual infinities being complete, closed and definite mathematical objects and that 

every potential infinity exists only within the path of the actual infinity. Many prestigious mathematicians and philosophers of his 

time decidedly disagreed with many of Cantor´s proofs, methods and ideas. However, his thoughts found great acceptance within 

Christian theologists, especially in neo-Thomist circles and were promoted by Pope Leo XIII himself. The religious appeal of 

Cantor’s ideas is not surprising [4]. Cantor must have been aware of the importance of them from a theological perspective. God 

is infinite but he is also absolutely complete; nothing exists beyond him; thus, God cannot be potentially infinite; God cannot be 

conceived as something capable of growing because that would mean that he is imperfect. God must be an actual infinity from 

him and within him, all other infinities were created, not suggested or projected or launched, but formed as complete, self-

identical infinities; many kinds among them but none with the property of growing endlessly because, in that unthinkable case, 

they could potentially extend themselves beyond God. Actual infinities have a lot of sense in theology but not in mathematics [5]. 

The concept of actual infinity produces not only logic and mathematic contradictions, but a type of contradiction that is even 

deeper and more evident: A semantic contradiction. In most dictionaries, the word infinite has the meaning, both as a noun and as 

an adjective, of limitless, endless, extending beyond any finite extension or quantity, etc.; from the Latin infinitus (limitless, 

borderless, endless). On the other hand, Cantor’s concept of actual infinity seems to be just an esoteric, thus confusing, version of 

the concept of finite. Ludwig Wittgenstein (1889-1951), known as one of the most influential philosophers of the Twentieth 
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century, whose work was mainly focused on logic, the philosophy of mathematics and the philosophy of language, was a firm 

critic of Cantor’s misuse of the words infinite and infinity and its catastrophic consequences for the foundations of mathematics 

[6]. It is difficult to establish whether religious beliefs were the deepest motivation for Cantor’s work or just a refuge from the 

rejection of his ideas by the mathematics community of his time. However, religious beliefs may have been an important 

motivation for some of his followers of the upcoming generation of mathematicians, such as A. A. Fraenkel, whose intellectual 

interests included finding logical explanations for some fantastic events described in the Torah. However, Cantor’s ideas may 

have never found enough support among the mathematics community without the applause of David Hilbert (1862-1943), who 

became the most influential mathematician of his generation and whose religion had nothing to do with the Judeo Christian God 

but, maybe, with his deep belief in the completeness and total coherence of mathematical systems, from which not even the 

infinite could escape. Hilbert endorsed Cantor’s Set Theory and that support was enough to turn Cantor’s misleading ideas into 

mathematical dogma until today. More interesting than establishing Cantor’s, Hilbert’s and Fraenkel’s motivations and biases, it 

would be trying to understand why the vast majority of the mathematics community has been defending, for more than a century, 

the concept of actual infinity or even ignoring that from that concept were derived, ideas such completed infinite sets, the 

cardinality of infinite sets, power sets of infinite sets, transfinite numbers, etc. However, it would not be the first time in history 

that humanity fell into such a kind of collective self-deception [7]. 

I will argue against some of the proofs presented by Cantor, which have contributed to the general misconception about infinite 

sequences of numbers, especially, to the wrong general belief that the concepts of cardinality and power set can be applied to 

them the same way they are applied to finite sets [8]. 

 

Logical development and faults of transfinite set-theory 

 

The following is the logical process for the construction of transfinite set-theory. I will present the main premises and methods 

used by Cantor in the construction of his theory and some irrefutable proofs of its faultiness [9]. 

 

Cardinality of the set of natural numbers 

 

The first postulate for the development of Transfinite Set-Theory is that there exists a set ℕ whose elements are all the natural 

numbers and its cardinality is infinity (∞). Further findings forced Cantor to distinguish this infinity from other infinities; for that 

reason, he eventually named it N0 (aleph null) or countable infinity since natural numbers are the numbers used for counting. N0 

is the least infinite cardinal number. Note that this implies that the infinite sequence of natural numbers is a self-identical entity; a 

completed set with a definite number of elements encompassing all possible natural numbers [10]. 

Self-contradictory statement about the cardinality of natural numbers: The cardinality of the set of natural numbers ℕ, 

which is also the set of all finite cardinal numbers, is the infinite cardinal N0, for which, given any arbitrarily large natural 

number (𝑛), the following is always true: 

 

𝑛 < N0 

 

That implies that different from what happens to any of its subsets, the set of all finite cardinal numbers has a cardinality that is 

greater than its greatest element. By definition, if there is a greatest element in a set, the set should be finite. If there is not a 

greatest element, the cardinality should be undetermined or undeterminable. 

Here we start seeing how infinite sets are excluded from at least one of the most necessary aspects of cardinality, with no other 

justification than the determination of attributing that property to all sets. 

Once the first postulate is accepted, we can ask ourselves whether other infinite sets, such as the set of even natural numbers or 

the set of integers, have cardinality N0 as well; whether they have the same number of elements as the set ℕ. 

 

Bijectivity implies equipotency 

 

Since every natural number can be transformed into a singular even natural number by the function 𝑓(𝑥)=2𝑥 and every even 

natural number can be transformed into a singular natural number by the function 𝑔(𝑥)=𝑥/2, then, from the Cantor-Schröder-

Bernstein Theorem we can affirm that there exists a bijection between those two sets. And, since we accept that infinite sets have 

a definite number of elements, we can also affirm that a bijective relation between two of them implies their equipotency; which 

means, they have the same number of elements. There exist just as many natural numbers as even natural numbers. It results 

evident that the same would happen with any infinite subset of the set of natural numbers and also with any finite multiplication 

of such sets, as the set of integers or the set of even integers. All those sets are called countable-infinite sets and their cardinal is 

N0. 

And, what about the rational numbers? 
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Cantor’s diagonal snake 

 

In 1890, Cantor published a proof of the accountability of rational numbers by using what is known today as Cantor’s diagonal  

snake or Cantor’s first diagonal. This proof starts by assuming that, as it happens with finite sets, all sets that can be mapped 

(disposed in a one-to-one display) to any countable-infinite set have a bijection with it and, thus, with the set of natural numbers. 

To prove that integers and rational numbers can be mapped to each other, Cantor organized all positive fractions in a squared 

array, in which each row contains all fractions with the same numerator and each column contains all fractions with the same 

denominator. Then, all fractions can be listed starting from the top-left corner and moving right down covering all the fractions in 

each diagonal and ignoring the ones that can be simplified, as follows: 

 

 
 

We get the following mapping:  

  

1, 2, 3, 4, 5, 6, 7, 8, 9, …  

1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, … 
 

Then, we just have to add 0 at the beginning of the list and, after each fraction, its negative, as follows: 

 

1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12, 13, … 

 

0,1, -1,1/2, -1/2, 2, -2, 3, -3, 1/3, ¼, -1/4,….. 

 

Therefore, the set of rational numbers has a bijective relation with the set of integers and, by extension, with the set of natural 

numbers; which means, it is countable- infinite; thus, the cardinality of the set of rational numbers is N0. 

 

Inconsistency of Cantor’s diagonal snake 

 

The problem with the proof above is that it implies that, differently from what happens with finite sets, there are right and wrong 

methods for mapping infinite sets, depending on the result we want to obtain. If we apply that same principle to the rest of 

mathematics, they would become inconsistent. 

 

We may decide to map natural and rational numbers by listing rational numbers in order of their denominators, for example; as 

follows: 

 

1, 2, 3, 4, 5, 6, … 

 

1/1, ½, 1/3, 1/4, 1/5, 1/6,….. 
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By using this method, we would never be able to map any fraction with a numerator different from one because denominators of 

one will always be equal to their pair and will increase infinitely as the counting terms increase. Cantor assumes that the above is 

not a problem in this case because, according to him, we only need one method that makes the mapping possible to affirm that a 

given set has the same size as the set of natural numbers. We also could claim the opposite; that we only need one method that 

makes the mapping impossible to affirm that a given set has a different size from the one of natural numbers. The choice of one 

assumption instead of the other is arbitrary unless a logical explanation invalidates the second method for infinite sets, other than 

the necessity of proving a specific hypothesis. 

In any other field of exact sciences, we would say that, if two different methods drive to different conclusions, there may be a 

mistake in the formulation of the hypothesis or at least one of the methods is wrong; and the reason to choose one method instead 

of the other is normally not because it is the one that proves our hypothesis. Think for example in the case of a neolithic physicist 

who wants to prove that things exposed to direct light get hotter. He shows his audience how a bowl of water gets hotter when it 

is exposed to direct sunlight and when it is placed close to a fire. But when someone asks him to try the same under the 

moonlight, the physicist refuses to do so, saying that it is needed just one method that can turn the water hotter in the presence of 

light to prove that light makes things hotter. In the case of Cantor mapping the rational numbers to the integers, as well as in the 

case of the neolithic physicist, there is no reason to prefer one of the methods better than the other, other than the necessity of 

proving a specific hypothesis. Both methods work the same for finite sets; thus, an explanation of why both do not work for 

infinite sets is required unless we consider ourselves as neolithic mathematicians. I am going to take Cantor’s arbitrary 

assumption as valid, just because it will further help me to refute another proof made by him. 

 

Contradictory statements about the cardinality of rational numbers 

 

Set theory tells us that the cardinality of a set is always greater than or equal to the cardinality of any of its subsets. By the 

function 𝑓(𝑥)=1/𝑥, we know that there exist at least as many rational numbers within the interval (0,1) as numbers in the set of all 

natural numbers. Thus, the cardinality of the set of rational numbers within the interval (0,1) must be N0. By the definition of 

rational numbers, we know that they can only have a finite number of decimal digits (𝑛) in their decimal representation. We also 

know that the total number of rational numbers cannot be higher than the total number of possible permutations of the natural  

numbers between 0 and 9 in (𝑛) positions. We also know that such a number is equal to 10𝑛, which is a finite number because (𝑛) 

is finite. Thus, the total number of rational numbers within the interval (0,1) is finite; therefore, the cardinality of such a set is 

lesser than N0, which contradicts the first underlined statement. 

 

When counterintuitive just means wrong 

 

Sometimes, counterintuitive conclusions are the result of unknown or unexpected complexities existing in reality. That is the case 

of some paradoxical outcomes from quantum mechanics and general relativity. Counterintuitive has become a very appealing 

word since the discoveries of Plank, Bohr, Einstein, Hubble, Heisenberg and Schrödinger, turning out to be, perhaps, one of the 

most expected signs of scientific breakthroughs. That, however, could have turned itself into a misleading intuition, growing deep 

roots into the field of mathematics, where conclusions are normally not derived from experimental observations, as they are in 

physics, but from rigorous logical demonstrations which are supposed to dissipate all wrong intuitions in the process. That, 

although, is not what happens in Set-Theory. Sometimes, counterintuitive conclusions are just the result of false assumptions or 

wrong methods. That is the case of the famous Hilbert’s Hotel allegory, which has been one of the symbols of transfinite set-

theory for a century and shows how it is possible to accommodate an infinite number of new guests in an already fully occupied 

hotel with infinite rooms. 

Let us analyze the following reasoning about the cardinality of countable infinite sets: 

 

 The cardinality of a set is a measure of the number of elements of the set 

 The set of integers has countable-infinity elements 

 The set of rational numbers has countable-infinite elements from a, b and c, it follows 

 Integers and rational numbers have the same cardinality. They have the same number of elements 

 

If we can presume that countable-infinity (N0) represents the number of elements of a set (magnitude of quantity), we may also 

presume the existence of a number representing an infinitely short magnitude (N
-1

). Then, if we accept that the reasoning above, 

regarding the cardinality of countable infinite sets, is true, we must accept that the following is true as well: 

 

 The distance between places A and B is the sum of the distances between all consecutive places between A and B 

 The distance between Amsterdam and Berlin can be divided into an infinite number of infinitely short consecutive 

distances 
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 The distance between Amsterdam and Chongqing can be divided into an infinite number of infinitely short consecutive 

distances from a, b and c it follows: 

 The distance between Amsterdam and Berlin is equal to the distance between Amsterdam and Chongqing. 

 

That is what happens when we use the concepts infinite, infinitely or infinity not as the property of having no end but as a 

magnitude of distance or quantity. After accepting that the sets of natural numbers, even natural numbers, integers and rational 

numbers have all the same number of elements, then we can ask ourselves what would be the cardinality of the set of real 

numbers. 

 

Equipotency between the set of real numbers and the set of real numbers within the interval (0,1) 

 

Any number within the interval (0,1) can be transformed into a positive real number by the function 𝑓(𝑥)=𝑥/1−𝑥 and any positive 

real number can be transformed into a number within the interval (0,1) by its inverse 𝑓(𝑥)
−1

 which is 𝑓(𝑦)=𝑦/1+𝑦 means, there is 

a bijective relation between those two sets of numbers; therefore, they have the same number of elements; they are equipotent. 

But, is their cardinality N0? 

 

Cantor’s diagonal argument 

 

In 1891 Georg Cantor published a proof of the uncountability of the set of real numbers using what is called the diagonal 

argument or Cantor’s second diagonal. It starts by assuming that the set of real numbers is countable-infinite and, thus, it has the 

same cardinality as the set of natural numbers. Then, we construct an enumerated hypothetical list of all the real numbers within 

the interval (0,1) in its binary representation (no strict order is necessary). Once we have the list, we construct a number, named 

diagonal number, by selecting, from each number in the list, the value of the decimal position that corresponds to the position of 

the number in the enumeration, as follows: 

 

1 → 0.00101011… 

2 → 0.11100010… 

3 → 0.10000111… 

4 → 0.10101010… 

5 → 0.01010101… 

⋮ ⋮ 
 

Diagonal number=0.01000… 

After that, we create a new number, named the anti-diagonal number, by changing all the values of the decimal string. 

Antidiagonal number=0.10111… 

The new number is a real number within the interval (0,1) but it is not in the enumerated list; therefore, there exist more real 

numbers than natural numbers. 

The above could seem absurd but it is not; at least, it is not absurd at the most superficial level. We may say that the diagonal 

number cannot be constructed because the list would grow exponentially as the string of decimal digits grows linearly, thus, the 

diagonal would never encompass more than a small fraction of the list. But remember that we are accepting that N0, the countable 

infinity, is a self-identical definite value and that is exactly the quantity of natural numbers that have ever existed, exist and will 

ever exist. The number of decimal digits is N0 and the size of the list is also N0, they cannot be smaller or larger than N0. Thus, 

we have a squared array and both the diagonal and antidiagonal numbers can be constructed, resulting in a number that it is not in 

the list and leading to the conclusion that the cardinal of the set of real numbers, also known as the cardinal of the continuum (𝒄), 

is greater than the cardinal of the set of natural numbers: 𝒄>N0. 

It is important to mention that the diagonal argument cannot be applied to the set of rational numbers because they do not have an 

infinite number of decimal digits. Their decimal digits are finite and any finite number is always lesser than N0; we do not know 

how lesser but, in any case, lesser than N0. Therefore, we cannot have a squared array and the diagonal number cannot be 

constructed. 

 

Proof A: There exist as many rational as irrational numbers 

 

I will present an arithmetic proof demonstrating that there exists one and only one irrational number per each existing rational 

number and vice versa; which implies that the cardinality of those two sets is exactly the same: |ℚ|=|ℝ−ℚ|. That, by extension, 

demonstrates that the cardinality of the set of real numbers is N0, which contradicts the conclusion derived from Cantor’s 

diagonal argument. 
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Statement about rational numbers 

 

Every rational number can be expressed as a finite simple continued fraction:  

 

 
Where (𝑎0) is an integer, (𝑎𝑖) is a positive integer for 𝑖=1, 2, … , 𝑟 and (𝑎𝑟) ≠ 1. 
 

Statement about irrational numbers 

 

Every irrational number can be expressed as an infinite simple continued fraction: 

 

 
 

Where (𝑎0) is an integer and (𝑎𝑖) is a positive integer for 𝑖 = 1, 2, … 

 

Existence of irrational numbers 

 

For every pair of rational numbers (p, q), there exists at least one irrational number (u), such that (u) is between (p) and (q). This 

can be confirmed by observing the last nested fraction of the simple continued fraction representation of two similar rational 

numbers. 

 

 
 

There exists at least one irrational number (u) between (p) and (q): 

 

 
 

Where (𝑎0) is an integer and (𝑎𝑖) is a positive integer for 𝑖 = 1, 2,… , 𝑟, 𝑠, (𝑠 + 1), … and (𝑎𝑟) ≠ 1. 
 

Existence of rational numbers 
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For every pair of irrational numbers (u, v), there exists at least one rational number (q), such that (q) is between (u) and (v). This 

can be confirmed by observing the last nested fractions that two similar irrational numbers have in common in their simple 

continued fraction representation; more exactly, at the nested fraction where they start to diverge from each other. 

 

 
 

There exists at least one rational number (q) between (u) and (v). 

 

 
 

Where (𝑎0) is an integer and (𝑎𝑖) is a positive integer for 𝑖=1, 2, …, 𝑟, 𝑠, (𝑠+1)… , 𝑡, (𝑡+1), … and (𝑎𝑟) ≠ 1. 
 

If (u) and (v) share the same nested fractions indefinitely, we can say (u) and (v) are mathematically indistinguishable from each 

other, thus: u=v. 

 

Final statement of proof A 

 

As it is true that (u) is between (p) and (q) for every (p, q) ∈ ℚ and (u) ∈ (ℝ−ℚ) and it is also true that (q) is between (u) and (v) 

for every (u, v) ∈ (ℝ−ℚ) and (q) ∈ ℚ, we can say that there exists one and only one irrational number per each existing rational 

number and vice versa. 

 

Therefore, |ℚ|=|ℝ−ℚ|. Q.E.D. 

 

Since the set of real numbers is the union of the sets of rational and irrational numbers and the cardinality of the union of two 

countable-infinite sets must be countable infinite as well, then, the cardinality of the set of real numbers must be N0, which 

contradicts the conclusion derived from Cantor’s diagonal argument. 

Once we accept that the cardinality of the set of real numbers (𝒄) is higher than N0, we should inquire whether there exist other 

infinite cardinal numbers different from N0 and 𝒄. 

 

Cantor’s theorem 

 

Cantor’s Theorem affirms that any set (including infinite sets) is strictly smaller than its power set. In order to prove that 

theorem, Gerhard Hessenberg (1874-1925) used a method which is not exactly the same but very similar to Cantor’s diagonal 

argument. That is why it is sometimes called the diagonal set. The proof is presented below:  

Theorem: Let 𝑓 be a map from set 𝐴 to its power set 𝑃(𝐴). Then 𝑓 ∶ 𝐴 → 𝑃(𝐴) is not surjective. As a consequence, card(𝐴) < 

card (𝑃(𝐴)) holds for any set 𝐴. 
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Proof: Consider the set 𝐵={𝑥 ∈ 𝐴 | 𝑥 ∉ 𝑓(𝑥)}. Suppose to the contrary that 𝑓 is surjective. Then there exists 𝜉 ∈ 𝐴 such that 

𝑓(𝜉)=𝐵. But by construction, 𝜉 ∈ 𝐵 ⇔ 𝜉 ∉ 𝑓(𝜉)=𝐵. This is a contradiction. Thus, 𝑓 cannot be surjective. On the other hand, 𝑔∶𝐴 

→ 𝑃(𝐴) defined by 𝑥 ↦ {𝑥} is an injective map. Consequently, we must have card(𝐴)<card(𝑃(𝐴)). Q.E.D. Cantor’s Theorem 

leads to the existence of an infinite number of different infinite cardinals. Since the cardinality of all countable-infinite sets is N0 

and the cardinality of the power set of a set with cardinality (𝑚) is 2𝑚, then, N0<2N0. Cantor later found that the cardinality of 

the power set of the set of natural numbers equals the cardinality of the real numbers (𝒄) and named that cardinal number: N1. 

However, that would be only the second one of an infinite catalogue of infinite cardinals 

{N0, N1, N2, N3. . . }, each one representing 2 to the power of its predecessor. 

 

Disproof of cantor’s theorem by using cantor’s methods 

 

We can also prove, by using Cantor’s diagonal snake, that the power set of the set of natural numbers is countable-infinite; 

meaning that those two sets are exactly the same size or, in other words, they have the same cardinality. 

Cantor’s diagonal snake method tells us that any set whose elements can be arrange in a squared array is countable, the same way 

the set of rational numbers is countable. We know that the number of possible subsets in any set 𝐴 is 2 to the power of the 

number of elements in A. We know, according to Cantor, that the number of elements in the set of natural numbers is N0, so we 

can say that card (𝑃(𝐴))=2
N0

 = 2 × 2 × 2 … Thus, we can arrange all elements 𝑥 ∈ 𝑃(𝐴) in a squared array as follows:  

 

𝑥1 𝑥2 

 

Then multiplying by two:  

𝑥1  2 

𝑥3  4 

 

Then multiplying by two:  

 

 
Then multiplying by two:     

 

 
 
We can make an array of the same characteristics than the one Cantor used to prove the countability of the set of rational 

numbers and then use the same mapping method to prove that any infinite set has the same cardinality as its power set. There is 

no reason to say that this method is acceptable in the case of rational numbers but unacceptable in the case of power sets, other 

than the need to prove some hypothesis and disprove others, which is arbitrary and thus, illogical. 

 

Contradictory statements about the cardinality of the set of natural numbers and its power set 

 

Set theory tells us that the cardinality of the set of natural numbers is N0 and the cardinality of its power set is 2N0=N1. Now, let 

us ask ourselves up to how many digits is a natural number allowed to have in its binary representation. If our answer is an 

infinitely large finite number, then, that number, regardless how large it is, is a finite number (𝑛). Thus, the quantity of all 

possible natural numbers could not be greater than the number of permutations of 0 and 1 in (𝑛) positions, which is 2𝑛; a finite 

number; therefore, we would have to state that the cardinality of the set of natural numbers is a finite number and the cardinality 

of its power set is also a finite number, which contradicts the first underlined statement. If, on the other hand, natural numbers 

could have an infinite number of digits (N0), then, the number of elements in the set of natural numbers would be given by 

2N0=N1 and the cardinality of its power set would be 2N1=N2, which also contradicts the first underlined statement. Neither 

having a finite nor an infinite number of digits, natural numbers can satisfy what set theory states about them. 

  

Cardinality does not apply to infinite sequences of numbers the same way it does to finite sets 
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It is been shown that some of the proofs published by Cantor have contradictory premises and/or arbitrary methodologic 

principles; and, as a result, contradictory conclusions can be derived when those methods are extended to other cases. It is 

possible to prove both, the countability and uncountability of the same infinite set, by using Cantor´s methods. The reason for 

such an inconsistency is that Cantor had to force his methodology in order to prove that the concept of cardinality applies to 

infinite sequences of numbers the same way it does to finite sets. 

Cardinality, by definition, cannot be determined for infinite sequences of numbers. The idea of the existence of infinitely many 

infinities, each one with a different value, is derived from the wrong assumption that cardinality can be determined for infinite 

sequences of numbers as it is for finite sets; therefore, the idea of multiple infinities was wrongly conceived. One of the 

consequences of such a mistaken conception or perhaps its actual origin, is the idea of the set of real numbers as a continuum and 

its topologic equivalence to the real line. And the foundation of such an idea may rest in the ancient misconception of lines as 

infinite collections of points. But, how could a sequence of non-dimensional objects form a one-dimensional one? How is that the 

sum of an infinite quantity of no lengths comes to be an infinite length? The notion of the sequence of real numbers as a 

continuum, as an object of constant, progressive and smooth change, as a numeric arrangement with no possible gaps, almost 

makes necessary the acceptance of the actual infinity and its meaning as the total quantity of real numbers and the erroneous 

belief on that infinite sequences of numbers have cardinality. 

That does not mean that we cannot get an idea of the shape, potential and size of an infinite sequence of numbers, but the concept 

of cardinality is useless to achieve that. Saying that a sequence has an infinite number of elements is meaningless if we want to 

have a deeper understanding of it. The concepts of countability and uncountability of a sequence of numbers are meaningless too. 

Sequences of numbers are collections of numbers. Numbers are discrete objects. We can count an infinite number of discrete 

objects by using just natural numbers. By definition, all sequences of numbers are countable. On the other hand, the existence of 

a bijective relation between two infinite sequences of numbers cannot be taken as an equivalent of those sequences being of the 

same size. The special nature of infinite sequences of numbers allows them to have bijective relations with other infinite 

sequences of different sizes, like in the case of integers and even integers. Saying that those two sequences of numbers have the 

same size, just because they both are infinite and there is a bijective relation between them, is a useless oversimplification of their 

singular nature. In order to have a more accurate and useful idea of the shape, potential and size of numeric structures, we need to 

see sequences of numbers in a different way. 

Moreover, proof A demonstrates that there exist or potentially can exist, as many rational as irrational numbers. That not only 

proves transfinite set theory wrong but also shows us how little we know about the real nature of numbers. An alternative theory 

is needed to understand what numbers are, how they come to exist, how they are different from each other and how many of them 

exist or potentially can exist. 

 

Fundamentals of the theory of numeric structures 

 

The development of the following theory was motivated by the necessity of an alternative to transfinite set theory, due to the 

incapacity of such a theory to explain the existence of one and only one irrational number per each existing rational number and 

vice versa, as it was shown in Section 3.5.1. (Proof A) of this work. The theory presented below is not exhaustive and it is not 

intended for a full comprehension of mathematics or to replace set theory but only to provide a better understanding of infinite 

sequences of numbers. 

 

Semantic clarification 

 

The following glossary clarifies the meaning of some words used in this and further sections: 

 

Infinite: (adjective) limitless or endless in space, extent or size; impossible to measure or calculate. 

Infinitely: (adverb) to an infinite extent or amount; without limit. 

Indefinitely: (adverb) to an unlimited or unspecified degree or extent. 

Infinity: (noun) the direction to which the value line extends itself infinitely. 

Exist: (verb) when referring to the expression of a value in the value line, that such an expression can be constructed. 

 

Justification 

 

Every mathematic activity (operation, analysis, etc.) takes place in a specific mathematical context which uses a specific 

language to express mathematical values. Such a language is given by numeric structures. 

 

Core definitions 
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The following definitions are the basis for the development of the theory of numeric structures: 

Value line: There exists a continuum (object of constant, progressive and smooth change) of mathematical value called value 

line. 

Number: There exists a specific value corresponding to a single point on the value line, which can be represented by an utter 

expression (an expression containing a finite quantity of symbols representing a finite quantity of mathematical objects). Such a 

value and its utter expression are indistinctly called a number. 

Numeric structure: There exists a mathematical expression that represents a rule or a collection of rules for constructing a 

sequence of numbers. Such a mathematical expression and the sequence of numbers it constructs are indistinctly called a numeric 

structure. 

 

Notation and some basic concepts 

 

Numeric structures could be treated, in some situations, as sets of numbers. However, I will not use the set theory notation and 

terminology in this work for two reasons: 

 Numeric structures are languages for expressing mathematical values in a specific mathematical context, not just ordinary 

sets of numbers. 

 Infinite sets are commonly conceived as completed collections, while infinite numeric structures are non-completable; they 

are always under construction since the sequences of numbers they construct are infinite. An infinite numeric structure 

would never be smaller or greater than what we need it to be. 

The difference between numeric structures and ordinary sets of numbers will become clearer as we advance through this work. 

The following notation is proposed in order to emphasize the above and also for its feasibility. 

The generic expression 𝑛𝑆{Λ} will be used to refer to numeric structures, where (Λ) describes the rules to create a sequence of 
numbers. The symbols used to denote such rules usually represent infinite sequences of numbers; thus, the expressions included 

in (Λ) have no algebraic meaning. Numeric structures can include arithmetic, geometric and/or other kind of mathematic 

relations as rules to construct sequences of numbers. 

 

Basic numeric structures 

 

Integers 𝑛𝑆{ℤ}, non-negative Integers 𝑛𝑆{|ℤ|} and positive integers 𝑛𝑆{ℕ} are the basic numeric structures. The rules to 
construct these sequences of numbers will not be described in this work. 

 

Non-basic numeric structures 

 

All other numeric structures are the description of the mathematic relation between the sequence of numbers they construct and 

the basic numeric structures. Rational numbers are an example of an arithmetic numeric structure represented as 𝑛𝑆{ℤ/ℕ}, 

meaning it is a numeric structure that constructs a sequence of all numbers which are the result of the division of any integer by 

any positive integer. Another example of a numeric structure based on an arithmetic relation is 𝑛𝑆 {± 
ℕ
√|ℤ|}, which constructs a 

sequence of all numbers that are the nth root of a non-negative integer. An example of a geometric-arithmetic   numeric structure   

is   the   sequence   of numbers commonly used to express angle values in radians: 𝑛𝑆 {+ℤ𝜋/ℕ}. 

A numeric structure does not determine the forms of representation of the sequence of numbers it constructs. That is determined 

by the numeral system. For example, the decimal and binary numeral systems are just two different representations of 

𝑛𝑆{ℤ/10
|ℤ|

}. 

The extension of a numeric structure can be limited to a certain interval. For example, the numeric structure commonly used to 

express Boolean values is 𝑛𝑆 {|ℤ| ≤ 1}; or, if we want to limit the value of angles to their decimal form between 0° and 360°, we 

will use 𝑛𝑆 {|ℤ| ≤ 360}; or if we need a numeric structure to express only sexagesimal values between (-1) and (1), we will 𝑛𝑆 {-

1 ≤ ℤ/60
|ℤ|

 ≤ 1}; or to express the time elapsed within a day in terms of fractions of day but limited to the precision of a second, 

we can use 𝑛𝑆 {|ℤ| ≤ ℕ/ℕ≤86400}, which is the sequence of all numbers resulting from the division of a non-negative integer by 

a positive integer in which the numerator is less than or equal to the denominator and the denominator is less than or equal to 

(86400). 

Single expressions and groups of expressions in (Λ) can be restricted not only to certain intervals but also to other kinds of 

specific mathematical conditions. For example, if we are working in a mathematical context in which only prime numbers are 

needed or allowed, the language to express mathematical    value    in    such    a    context    can    be    described    as 𝑛𝑆 {ℕ𝑎| 

(ℕ𝑎 𝑚𝑜𝑑 (ℕ𝑏 ≠ ∧ (1, ℕ𝑎))) ≠ 0}, which   is   the   sequence   of   all positive integers such that the remainder of the division of 

such numbers by any positive integer, except one and themselves, is not equal to zero. 

 

Union and intersection of numeric structures 
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Two or more numeric structures, 𝑛𝑆{Χ}, 𝑛𝑆{Ψ}, 𝑛𝑆{Ω}, …, can be merged to form a compound numeric structure 

𝑛𝑆{Λ}=𝑛𝑆{Χ} 𝖴 𝑛𝑆{Ψ} 𝖴 𝑛𝑆{Ω} 𝖴… = 𝑛𝑆 {𝖴 (Χ, Ψ, Ω …)}.  

For example, 𝑛𝑆 {ℤ/ ℕ} can be merged with 𝑛𝑆 {± 
ℕ
√|ℤ|} to form: 𝑛𝑆 {𝖴 (ℤ/ℕ, ± 

ℕ
√|ℤ|)}. 

Similarly, we can construct a sequence of the numbers that two or more different numeric structures have in common. For 

example, the numeric structure for constructing the sequence of numbers that 𝑛{2ℕ} and 𝑛𝑆{3ℕ} have in common will be 
expressed as 𝑛𝑆{∩ (2ℕ, 3ℕ)}. 

 

Real numbers 

 

We will use the expression 𝑛𝑆{ℝ} to represent the compound numeric structure whose components are all the infinitely many 
possible numeric structures of real value. 

Note: Imaginary and complex numeric structures will not be discussed in this work. 

 

Uniform infinitely intensive numeric structures 𝒏𝑺{𝜆} 

 

Some numeric structures can construct an infinite quantity of numbers between any two numbers constructed by them; we will 

call them uniform infinitely intensive numeric structures and we will use lower-case Greek letters in their generic expression; 

e.g., 𝑛𝑆{λ}, 𝑛𝑆{μ}, etc. A deeper explanation about the different types and classification of numeric structures will be provided 

in section 11. 

 

Embedded and unembedded values in 𝒏𝑺{𝜆} 

 

A number is the utter expression of a specific mathematical value. Some values represented by numbers in a given uniform 

infinite intensive numeric structure, 𝑛𝑆{𝜆}, may not have an utter expression in a different numeric structure, 𝑛𝑆{𝜇}. In such a 

case, we will say that the value of (𝑥) is embedded in 𝑛𝑆{𝜆} and unembedded in 𝑛𝑆{𝜇}. Nevertheless, we may find a non-utter 

expression of (𝑥) in terms of 𝑛𝑆{𝜇}. A non-utter expression is any expression that contains an infinite number of symbols or a 

symbol representing an infinite number of mathematical objects.  

For example, a number for the value of (𝜋) can be constructed by 𝑛𝑆 {ℤ𝜋/ℕ}, in which it has the utter expression (𝜋). That same 

value is unembedded in 𝑛𝑆 {ℤ/10
|ℤ|

} but it can be represented in it with the non-utter expression 3.14159 …, where (…) is a 

symbol representing an infinite number of non-repeating decimal digits. The same happens in relation to 𝑛𝑆 {ℤ}, in which (𝜋) 

can be represented by the non-utter expression: 

 

 
 

Where (⋱) represents an infinite number of nested fractions.12 

On the other hand, in numeric structures like 𝑛𝑆 {ℤ𝜋/ℕ}, integers can only be  represented by non-utter expressions (containing 

an infinite number of symbols or symbols representing an infinite number of mathematical objects). 

We may think that (𝜋), (𝜑) and (𝑒) are arbitrary symbols to abbreviate non-utter expressions, but they are not. They are arbitrary 

symbols to abbreviate utter expressions. 

𝜋=𝑐/𝑑 where (𝑐) is the perimeter of a circle and (𝑑) is its diameter 

𝜑=𝑎/𝑏 such that 𝑎/b=𝑎+𝑏/𝑎 and (𝑎>𝑏>0) 

𝑒= lim (1+1/n)  

    𝑛→∞ 

which is an utter expression because infinity in this case refers to a direction in the value line, not to an infinite number of 

mathematical objects. Note that, unlike what happens with numeric structures, in set theory it does not make much sense to talk 

about expressing elements of one set in the language of another set. Let us see the case of 𝑛𝑆{
ℕ
√ℕ}. The numbers constructed in 

such a structure using the first 15 positive integers would seem on the real value-line as follows (the reason to use the expression 
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“real value-line” instead of “number line” or “real line” will be explained in section 10): 

 

 
We may get the impression that the more non-negative integers are used to construct the sequence of numbers in this numeric 

structure the less likely is the existence of unembedded values in it; but, actually, no matter how many non- negative integers are 

used in the construction of this sequence, most values embedded in some other numeric structures will always be unembedded in 

this numeric structure. For instance, most values embedded in 𝑛𝑆{|ℤ|/ℕ}, 𝑛𝑆{|ℤ|𝜋/ℕ} and 𝑛𝑆 {|ℤ|/10
|ℤ|

}, like 3/4, 𝜋/2 and 1.124 

will always be unembedded in 𝑛𝑆{
ℕ
√ℕ}, regardless the number of positive integers used to construct its sequence of numbers. 

Now, let us check a different situation. See how, using the same partial construction, 𝑛𝑆 {|ℤ|/ℕ} looks like on the real value-line, 

just to have a visual representation of this numeric structure: 

 

 
 

Something similar happens in this case.  Most values embedded in 𝑛𝑆{
ℕ
√ℕ} and 𝑛𝑆 {|ℤ|𝜋/ℕ}, like 

2
√2, 

3
√7, 𝜋 and 𝜋/5 will 

always be unembedded in 𝑛𝑆 {|ℤ|/ℕ}, regardless the number of integers used to construct its sequence of numbers. While the 

embedded 

values in 𝑛𝑆 {|ℤ|/ℕ} are commonly called non-negative rational numbers, the unembedded values in this numeric structure are 

known as non-negative irrational numbers. 

A third example is given to enable a complete understanding of what numeric structures are. Let´s see how 𝑛𝑆 {|ℤ|/10
|ℤ|

} looks 

like on a value line constructed the same way it was done for the previous two cases. 

 

 
 

As in the previous case, most values embedded in 𝑛𝑆{
ℕ
√ℕ} and 𝑛𝑆 {|ℤ|𝜋}, like 

2
√2, 𝜋/5 and 𝜋 will always be unembedded in 𝑛𝑆 

{|ℤ|/10
|ℤ|

}, regardless the number of integers used to construct its sequence of numbers. However, they can be represented in 𝑛𝑆 

{|ℤ|10
|ℤ|

} with the non-utter expressions 1.4142 …, 3.1415 … and 0.6283 …, respectively. The same happens to some of the 

values embedded in 𝑛𝑆 {|ℤ|/ℕ}, like 1/3, 9/11 and 1/7, which can be represented in 𝑛𝑆 {|ℤ|10
|ℤ|

} with the non-utter expressions 0. 

3, 0.81  and 0.  142847, respectively; where (𝑑  ) represents an infinite repetition of the decimal digits (𝑑). Here, it may be necessary 

to emphasize that non-utter expressions are not numbers; they do not express specific values; they are just approximations. That 

is true regardless how well we know the infinite mathematical objects of the expression because it never reaches a specific value. 

For that reason, we have that the following propositions are true: 

 

 
 

Note 1: Some numeric structures can construct numbers represented by more complex mathematical expressions.  

For example: 𝑛𝑆 {ℤ + sin ℤ/𝜋ℕ
} constructs a number with the utter expression 9+sin 15/𝜋3

. 

Note 2: The embedded values in a compound numeric structure are the embedded values in all of its components. However, we 

cannot affirm the same about its unembedded values because an unembedded value in one of the components could be embedded 

in other. 

It is clear now that the possibility of representing a value with an utter expression depends only on the numeric structure with 

which we decide to work. 

Now, a question arises: Are there more embedded or unembedded values in any given 𝑛𝑆{λ}? 
Proof B: There are as many unembedded as embedded values in the decimal numeric structure {ℤ/10

|ℤ|
}

14
 

I already presented, in Section 3.5.1. (Proof A), a demonstration of the existence of one and only one irrational number per each 

existing rational number and vice versa; which is equivalent to state that there are as many unembedded as embedded values in 

𝑛𝑆{ℤ/ℕ}. 
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Now I will present an arithmetic proof demonstrating that there exists one and only one unembedded value in 𝑛𝑆 {ℤ10
|ℤ|

} per 

each embedded value in it and vice versa. 

  

Statement about embedded values in 𝒏𝑺 {ℤ/10|ℤ|
} 

    

Every embedded value in 𝑛𝑆 {ℤ/10
|ℤ|

} can be expressed as a finite decimal expression: 

 

z. 𝑑1𝑑2 … 𝑑𝑟 

 

Where (z) is the integer part, (𝑑𝑖) are decimal digits for 𝑖 = 1, 2, … , 𝑟 and 𝑑𝑟 ≠ 0. 
 

Statement about unembedded values in 𝑛𝑆 {ℤ/𝟏𝟎|ℤ|
} 

 

Every unembedded value in 𝑛𝑆 {ℤ/𝟏𝟎|ℤ
} can be expressed as an infinite decimal expression: 

 

z. 𝑑1𝑑2 … 

 

Where (z) is the integer part and (𝑑𝑖) are decimal digits for 𝑖=1, 2, …. 

 

Existence of unembedded values in 𝒏𝑺 {ℤ/𝟏𝟎|ℤ|
} 

 

For every pair of embedded values (p, q) in 𝑛𝑆 {ℤ/10
 |ℤ|

}, such that p<q, there exists at least one unembedded value u   in 𝑛𝑆 

{ℤ/10
 |ℤ|

}, such that p<u<q. This can be confirmed by observing the last decimal digits of the decimal expression of two similar 

embedded numbers. 

 

p=z. 𝑑1𝑑2 … (𝑑𝑟−1) 
q = z. 𝑑1𝑑2 … 𝑑𝑟 

  

There exists at least one unembedded value (u) between (p) and (q):  

 

u=z. 𝑑1𝑑2 … (𝑑𝑟 − 1) 𝑑𝑠𝑑𝑠+1 … 

 

Where (z) is the integer part of a number, (𝑑𝑖) are decimal digits for 𝑖=1, 2, … , 𝑟, 𝑠, (𝑠 + 1), … and 𝑑𝑟 ≠ 0. 
 

Existence of embedded values in 𝑛𝑆 {ℤ/𝟏𝟎|ℤ|
} 

 

For every pair of unembedded values (u, v) in 𝑛𝑆 {ℤ/𝟏𝟎|ℤ
}, such that u<v, there exists at least one embedded value (q) in 𝑛𝑆 

{ℤ/𝟏𝟎|ℤ
}, such that u<q<v. This can be confirmed by observing the last decimal digits that two similar unembedded values have 

in common; more exactly, at the decimal position where they start to diverge from each other. 

 

u=z. 𝑑1𝑑2 … (𝑑𝑟−1) 𝑑𝑠𝑑𝑠+1 … 

v=z. 𝑑1𝑑2 … 𝑑𝑟𝑑𝑡𝑑𝑡+1 … 

 

There exists at least one embedded value (q) between (u) and (v): 

 

q=z. 𝑑1𝑑2 … 𝑑𝑟 
 

Where (z) is the integer part of a number, (𝑑𝑖) are decimal digits for 𝑖=1, 2,… , 𝑟, 𝑠, (𝑠 + 1) … , 𝑡, (𝑡 + 1), … and 𝑑𝑟 ≠ 0. 
If (u) and (v) share the same decimal digits indefinitely, we can say (u) and (v) are mathematically indistinguishable from each 

other, thus: u=v. 

 

Final statement of proof B 

 

As p<u<q is true for every (p, q) embedded and (u) unembedded in 𝑛𝑆 {ℤ/10
|Z|

} and u<q<v is also true for every (u, v) 

unembedded and (q) embedded in 𝑛𝑆 {ℤ/10
|Z|

}, we can say that there exists one and only one unembedded value in 𝑛𝑆 {ℤ10
|Z|

} 

per each existing embedded value in it and vice versa. Q.E.D. 
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Proof C: Theorem of parity 

 

Theorem of parity: In any given 𝑛𝑆{λ} there exists at least one unembedded value between any two embedded values and there 
exists at least one unembedded value between any two embedded values; thus, in any given 𝑛𝑆{λ} there exists one and only one 
unembedded value per each existing embedded value and vice versa. 

 

Now I will present a geometric proof demonstrating that there are as many unembedded as embedded values in any 𝑛𝑆{𝜆}; that 

means, there is an embedded-unembedded value parity in every 𝑛𝑆{𝜆}. 

 

Wrapping representations and succeeding convergent 

 

Any finite initial portion of a non-utter expression of the value (𝑥) unembedded in 𝑛𝑆{𝜆} represents a convergent of (𝑥), which 

means it is an embedded value in 𝑛𝑆{𝜆} approaching (𝑥). For example: {3, 3.1, 3.14, 3.141, 3.1415, …} are finite initial portions 

of 3.14159…, which means they all are convergents of (𝜋) from its decimal representation in 𝑛𝑆 {ℤ10
|Z|

}. They are shown in the 

following value line: 

  

 
 

Note that these convergents approach (𝜋) only from one side of the value line. However, we can also construct non-utter 

representations of any value (𝑥) unembedded in any 𝑛𝑆{𝜆}, in which the convergents approach (𝑥) from both sides of the value 

line, as it is the case of alternating series of progressively smaller values. 

In order to represent 𝜋 in 𝑛𝑆 {ℤ10
|ℤ|

}, we can construct the alternating series: 

  

.  

 

The first few convergents of (𝜋) from this alternating series representation in 𝑛𝑆 {ℤ10
|Z|
} are: {4, 3.1, 3.15, 3.141, 3.1416, … }. 

When the convergents of a non-utter representation of the value (𝑥) unembedded in 𝑛𝑆{𝜆} approach to it from both sides of the 

value line, we will say that it is a wrapping representation of (𝑥) and its convergents are wrapping convergents. 

The first few wrapping convergents of (𝜋) from its simple continued fraction representation in 𝑛𝑆 {ℤ/N} are shown below in 

computing order: 

 

 
 

A pair of convergents that are computed one immediately after the other in a given wrapping representation will be called 

succeeding convergents. In the case shown above, the pairs (3, 22/7), (22/7, 333/106), (333/106, 355/113) and (355/113, 

103993/33102) are succeeding convergents of (𝜋). They are shown in the following value line: 
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Note that the value of (𝜋) is always between any pair of succeeding convergents of its simple continued fraction representation 

and, as the computation moves forward, succeeding convergents get closer to each other. In fact, we can affirm that a value (𝑥) 

unembedded in any 𝑛𝑆{𝜆} is between every pair of succeeding convergents of its wrapping representation and succeeding 

convergents of every wrapping representation get closer to each other as more of them are computed. 

Geometric considerations 

 

In order to avoid contradictory notions about value lines, we need to consider the following: 

A point is a geometric object of 0 dimensions, which means, it has no length, width or thickness; thus, a succession of points 

cannot produce any object of dimensions greater than 0. A length of 0 plus a length of 0 equals a length of 0. However, points can 

be placed on objects of dimensions greater than 0 (e.g., a line). 

A line is a geometric object of 1 dimension, which means, it has length but it has no width or thickness; thus, a succession of 

parallel lines cannot produce any object of dimensions greater than 1. A width of 0 plus a width of 0 equals a width of 0. 

However, lines can be placed on objects of dimensions greater than 1 (e.g., a plane). It is impossible to fill the length of a line 

with objects that have no length (points). 

A line segment is a line with well-defined ends marked with points. Between any two points on a single line there exists at least 

one-line segment and between any two segments of the same line there exists at least one point. 

An infinitely short line segment is the best possible approximation to a point in terms of one-dimensional objects. The endpoints 

of such a segment will be called infinitely close points. The magnitude of Infinitely short line segments is undeterminable. 

 

Geometric meaning of embedded and unembedded values 

 

If {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5…} are wrapping convergents of the unembedded value (𝑥) in 𝑛𝑆{𝜆}, we know that (𝑥) is within the value-line 

segments {𝑠1, 𝑠2, 𝑠3, 𝑠4, …} formed by every pair of succeeding convergents, with increasing precision after each (𝑠𝑖), as (𝑖) 
increases towards infinity. That is shown in the following value line: 

 

 
 
Note that (𝑠𝑖) gets shorter as (𝑖) increases but it will never turn into a single point because the value line is infinitely divisible; 

thus, the wrapping expression of an unembedded value (𝑥) in 𝑛𝑆{𝜆} can geometrically be defined as the representation of an 

infinitely short value-line segment, whose endpoints are its infinitely close succeeding convergents. Since it is true that every 

value (𝑥) unembedded in any 𝑛𝑆{𝜆} can be represented by a wrapping expression in terms of 𝑛𝑆{𝜆}, which convergents are 

values embedded in 𝑛𝑆{𝜆}, we can state that every unembedded value in any given 𝑛𝑆{λ} corresponds to an infinitely short 
segment of the value line (in which 𝑛𝑆{λ} has its domain)15, whose endpoints correspond to embedded values in 𝑛𝑆{λ}. 
 

Final statement of proof C 

 

Since the above is true and it is also true that any value of the value line (where a numeric structure 𝑛𝑆{λ} has its domain) has to 
be, by definition, either an embedded or an unembedded value in 𝑛𝑆{λ} and it is also true that there exists at least one line 

segment between any two points on a line and there exists at least one point between any two segments of the same line, then, we 

can affirm that, in any given 𝑛𝑆{λ}, there exists at least one unembedded value between any two embedded values and there 

exists at least one unembedded value between any two embedded values; thus, in any given 𝑛𝑆{λ} there exists one and only one 
unembedded value per each existing embedded value and vice versa; that means, there is an embedded- unembedded value parity 

in every 𝑛𝑆{λ}. Q.E.D. The Theorem of parity applies to infinitely intensive compound numeric structures as well since the 

geometric meaning of their embedded and unembedded values is the same as for infinitely intensive non-compound numeric 
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structures. Therefore, at any portion of any 𝑛𝑆{λ}, for all embedded numbers (𝑎, 𝑏, 𝑐), where (𝑎) is infinitely close to (𝑏) and (𝑏) 

is infinitely close to (𝑐), we will find the following arrangement: 

 

 
 

Where (𝑎𝑏) and (𝑏𝑐) are unembedded values in 𝑛𝑆{λ}. 
Alternative definition of irrational numbers 

 

The above allow us to define irrational numbers (it would be better to call them irrational values) as the infinitely short line 

segments of the 𝑛𝑆 {ℤ/N} value line (open interval) between the points that represent all rational numbers. 

  

Unembedded values in numeric structures different from ns{𝜆} 

 

We can also decide to accept unembedded values in other numeric structures different from uniform infinitely intensive numeric 

structures. For example, the numeric structure commonly used to express Boolean values, 𝑛𝑆 {|ℤ| ≤ 1}, constructs only the 
numbers (0) and (1), to which we assign values of truth; (false) and (true), respectively. The proposition “this proposition is 

false”, though, cannot be qualified with any embedded value in 𝑛𝑆 {|ℤ| ≤ 1}. Instead, when we compute it (validate any two 
options and correct if necessary), we will note that its value jumps infinitely from (0) to (1) and from (1) to (0). The value of truth 

of such a proposition is unembedded in 𝑛𝑆 {|ℤ| ≤ 1}. We can say that such a value is undecidable or, actually, express it as the 

alternating series (1-1+1-1+ ⋯) or as the Boolean open interval (0,1). The same numeric structure can be used to qualify different 

fundamental states in quantum physics. Self-references, superpositions and irrational numbers may have in common that they can 

only be definite or valid under a specific structure of thought. 

  

Parity paradox 

 

Proof C also demonstrates that, in any given 𝑛𝑆{λ}, there exists an infinite number of unembedded values between any two 
embedded values and vice versa. We may think that this contradicts the Theorem of parity, but it does not. When it is said of an 

object that it is infinite, it means that such an object is non-completable; thus, it is indefinite; it cannot be said that such an object 

is self-identical and, therefore, classical logic has to be applied to it with that consideration in mind. 

Let us observe a particular case of the parity paradox. Consider the numeric structures 𝑛𝑆 {ℕ/ ℕ}(positive  rational  numbers)  

and  𝑛𝑆{ℕ√ℕ}  (we  will  call  them  positive  radical numbers). We have that, in each one of them, there are as many embedded 

values (positive rational and radical numbers respectively) as unembedded values (positive irrational and irradical values) and 

that some values are embedded in both of them (positive integers). A question arises: What is it there just after every positive 

integer? It cannot be a rational number because all integers are also rational numbers and, according to the Theorem of parity, 

there must be an irrational value between any two of them. It cannot be a radical number because all integers are also radical 

numbers and, according to the Theorem of parity, there must be an irradical value between them. Apparently, we have come to a 

paradox. 

The right answer to that question is: it depends on the numeric structure with which we are working. If we are working with 𝑛𝑆 

{ℕ/ℕ}, there is at least one irrational value between an integer and any other rational number. If we are working with 𝑛𝑆{ℕ√ℕ} 
there is at least one irradical value between an integer and any other radical number. However, there is a third option. Just at the 

moment we started to join two different numeric structures in our mind, we have created a new numeric structure:  𝑛𝑆 {𝖴 (ℕ/ℕ, 
ℕ
√ℕ)}.  In this numeric structure there is an infinite quantity of rational numbers between any two radical numbers; there is, as 

well, an infinite quantity of radical numbers between any two rational numbers; and, also, there exists at least one irrational-and-

irradical value between any pair of rational, radical or rational radical numbers (integers). That means, just after every integer, in   

𝑛𝑆 {𝖴 (ℕ/ ℕ, ±
ℕ
√ℕ)}, there   must   be   an   irrational and irradical   value.   It   is important to be aware of the numeric structure 

in which we are working to avoid confusion and paradoxes. Nevertheless, another question may arise: What is it there, just after 

every integer and its following irrational-and-irradical value? That will depend on what exactly is the integer to which we are 

referring and the stage of the construction of the numeric structure. For example, in 𝑛𝑆 {𝖴 (ℕ/ ℕ, 
ℕ
√ℕ)}, using just the 

combinations of the first 15 positive and negative integers to construct its sequence of numbers, a radical number (
2
√10) will be 

just after the integer 3 and its following unembedded number; but, in that same stage of the construction, a rational number (13/3) 

will be just after the integer 4 and its following unembedded number. That situation, however, most likely would be different in a 

further stage of construction. For example, using the combinations of the first 30 positive and negative integers, a radical number 

(
3
√28) will be just after the integer 3 and its following unembedded number and another radical number (

2
√17) will be just after 
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the integer 4 and its following unembedded number. Then, how would it be when the numeric structure is complete? As it is 

being emphasized since the beginning, infinite numeric structures are non-completable; they are always under construction since 

the sequences of numbers they construct are infinite. An infinite numeric structure would never be smaller or greater than what 

we need it to be. That is one of the properties that make them different from ordinary sets of numbers. 

  

The real value-line and unspecifiable values 

 

Let 𝑛𝑆{ℝ} be a compound numeric structure whose components are all the infinitely many possible numeric structures of real 
value. Therefore, the embedded values in 𝑛𝑆{ℝ} are all the infinitely many possible numbers in the real value-line (the real 

numbers). The Theorem of parity tells us that, even in this numeric structure, there exist as many unembedded as embedded 

numbers and, since all the numbers constructed by any possible numeric structure are already embedded in 𝑛𝑆{ℝ}, then the 
unembedded values in it cannot have any correspondent utter expression in any possible numeric structure. For that reason, the 

unembedded values in 𝑛𝑆{ℝ} will be called unspecifiable values. That means that there exist as many real numbers as 
unspecifiable values in the real value-line. Real numbers are a discrete sequence of numbers; they are not a continuum (this can 

be derived from the definitions of "value line" and "number" in section 5.3. and the definitions of "point" and "line" in section 

7.2.). The real value-line, not the real numbers, is the continuum of real mathematical value. The real value-line is not a 

succession of numbers, as a line cannot be a succession of points. In order to avoid any confusion between the real numbers and 

the continuum of values where they exist, I have preferred to use the term “real value-line” instead of “number line” or “real 

line”. The reasoning above is also applicable to the imaginary numbers 𝑛𝑆{ℝ𝑖} and the imaginary value-line. 

  

Shape, potential and size of numeric structures 

 

It is possible to have a more precise idea about the form of a numeric structure than the one provided by the concept of 

“cardinality”. In order to achieve that, we need to define the concepts of shape, potential and size in the realm of numeric 

structures. 

 

Shape of 𝒏𝑺{𝚲} 

 

Every numeric structure has an intrinsic shape consisting in a series of properties which are identifiable and invariant along its 

construction process. The properties that determine the shape of a numeric structure are the following: 

 

Shape of 𝒏𝑺{𝚲} according to the value line in which it has its domain 

 

Depending on the value line in which numeric structures have their domain, they can be classified as: 

Real: If their domain exists only within the real value-line 

Imaginary: If their domain exists only within the imaginary value-line 

Complex: If their domain exists within both real and imaginary value-lines 

 

Shape of 𝒏𝑺{𝚲} according to the direction in which its construction advances 

 

Depending on the direction in which numeric structures move after each stage of their construction proses, they can be classified 

as: 

Positive: If they advance only towards infinity 

Negative: If they advance only towards negative infinity 

Reversal: If they advance towards zero 

Positive-negative: If they advance towards both the infinity and negative infinity 

 

Shape of 𝒏𝑺{𝚲} according to their uniformity 

 

Depending on the quantity of numbers they can construct on any value-line segment of the same length, numeric structures can 

be classified as: 

Uniform: If they can potentially construct the same quantity of numbers on any value-line segment of the same length; e.g., 𝑛𝑆 

{ℤ/ℕ}, 𝑛{-|ℤ|}, 𝑛𝑆{π ℤ}, etc. 

Non-uniform: If they cannot construct the same quantity of numbers on any value line-segment of the same length; e.g., 

𝑛𝑆{
ℕ
√2}, 𝑛𝑆 {15 ≤ ℤ ≤ 15/ ℕ≤15}, 𝑛𝑆{𝑒ℤ}, 𝑛𝑆 {ℕ𝑎| (ℕ𝑎𝑚𝑜𝑑 (ℕ𝑏 ≠𝖠 (1, ℕ𝑎))) ≠ 0}, etc. 
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Shape of 𝒏𝑺{𝚲} according to their projection to infinity 

 

Depending on the way numeric structures project themselves infinitely, they can be classified as: 

Finite: If they do not project themselves infinitely in any sense; e.g., 𝑛𝑆 {ℕ ≤ 10}, 𝑛𝑆 {-1 ≤ ℤ ≤ 1}, 𝑛𝑆 {|ℤ|≤ℕ ℕ≤86400}, etc. 

Infinitely extensive: If they project themselves infinitely only towards any direction of the value line; e.g., 𝑛𝑆{ℤ}, 𝑛𝑆{|ℤ|}, 
𝑛𝑆{−ℕ}, 𝑛𝑆{2ℤ}, 𝑛𝑆{−2|ℤ|+1}, 𝑛𝑆 {ℤ/3}, 𝑛𝑆{±(2

ℕ
)}, etc. 

Infinitely intensive: If they project themselves infinitely only deep inside the value line; e.g., 𝑛𝑆 {2𝜋 (|ℤ| ≤ ℕ/)/ℕ}, 𝑛𝑆 {|ℤ|10
|ℤ|

 ≤ 

360}, 𝑛𝑆 {sin |ℤ|10
|ℤ|

}, 𝑛𝑆 {−1 ≤ ℤ/ ℕ ≤ 1}, etc. 

Infinitely extensive-intensive: If they project themselves infinitely both in direction of the value line and deep inside it; e.g., 𝑛𝑆 

{ℤ/ℕ}, 𝑛𝑆 {±
ℕ
√|ℤ|}, 𝑛𝑆 {ℕ (sin |ℤ|/10

|ℤ|
)}, etc. 

 

Potential of 𝒏𝑺{𝚲} 

 

We will define the potential of a numeric structure as its capacity for constructing an infinite quantity of numbers. Depending on 

the scope towards numbers are constructed, we can establish the following hierarchy of criteria, in order to rank the potential of 

numeric structures: 

 

 Capacity for constructing an infinite quantity of numbers both extensively and intensively 

 Capacity for constructing an infinite quantity of numbers uniformly 

 Capacity for constructing an infinite quantity of numbers in both positive and negative sides of the value line 

 Capacity for constructing an infinite quantity of numbers 

 

We can stratify the potential of real and imaginary numeric structures from the lowest to the highest according to the criteria 

above, as follows: 

 

 Finite 

 (Positive or negative or reversal) and (non-uniform) and (infinitely extensive or infinitely intensive) 

 (Positive-negative) and (non-uniform) and (infinitely extensive or infinitely intensive) 

 (Positive or negative or reversal) and (uniform) and (infinitely extensive or infinitely intensive) 

 (Positive-negative) and (uniform) and (infinitely extensive or infinitely intensive) 

 (Positive or negative or reversal) and (non-uniform) and (infinitely extensive- intensive) 

 (Positive-negative) and (non-uniform) and (infinitely extensive-intensive) 

 (Positive or negative or reversal) and (uniform) and (infinitely extensive- intensive) 

 (Positive-negative) and (uniform) and (infinitely extensive-intensive)  

 

The potential of a numeric structure is not an indicator of its size. 

 

Size of 𝒏𝑺{𝚲} 

 

We will define the size of a numeric structure as the quantity of numbers it can construct. We can obtain three different size 

measurements of numeric structures depending of their shape: 

Total size: It is the total quantity of numbers constructed by a numeric structure. Applies only to finite numeric structures. 

Relative size: It is the quantity of numbers constructed by a numeric structure relative to 𝑛𝑆{ℤ}, whose relative size is (1). 
Applies only to uniform infinitely extensive numeric structures. 

Partial size: It is the quantity of numbers constructed by a numeric structure within a specific interval at a specific stage of 

construction. Applies to all numeric structures. 

 While establishing the total size of any finite numeric structure is possible by just counting the quantity of numbers (embedded 

values) in it, the same task results impossible for any infinite numeric structure; and limiting ourselves to say that their size is 

infinite is not only useless but also very unprecise. Instead, we can obtain meaningful information about the size of infinite 

numeric structures by two different methods, depending on their shape. 

 

Size of infinitely extensive numeric structures 

 

We can measure the size of infinitely extensive numeric structures by calculating their density (𝐷) in relation to the basic numeric 

structures within a specific interval. We can calculate the density of a numeric structure within the interval (a, b) as follows: 

http://www.tsijournals.com/


www.tsijournals.com | March-2025 

 

 
 

  

 

 

                                                                                                                                                                                       5 

 

 
 

In order to compare the density of two or more non-uniform infinitely extensive numeric structures, the chosen interval has to be 

the same in all cases. As the density of non-uniform numeric structures can vary from one interval to another, the calculation of 

density will give us their partial size (only for the chosen interval). In the case of uniform infinitely extensive numeric structures, 

we just need an interval large enough to include a few of its numbers in order to obtain its relative size. Once we have calculated 

its density, we multiply it by the relative size of the basic numeric structure with which it shares its domain. The resulting value 

will be its relative size. We will establish the relative size of 𝑛𝑆{|ℤ|} and 𝑛𝑆{ℕ} as 1/2. For instance, we have that even integers, 

𝑛𝑆{2ℤ} and odd integers, 𝑛𝑆 {±(2ℤ−1)}, both have density (1/2) and, as they share their domain with the integers, 𝑛𝑆{ℤ}, their 

relative size is also (1/2). As another example, we have that 𝑛𝑆{3|ℤ|} and 𝑛𝑆{3ℕ-1} both have density (1/3) and, as one shares its 

domain with 𝑛𝑆{|ℤ|} and the other with 𝑛𝑆{ℕ}, their relative size is (1/6). The difference made by the construction of the number 

(0) in 𝑛𝑆{3|ℤ|} is negligible when comparing infinite numeric structures. 
 

Size of infinitely intensive and extensive-intensive numeric structures 

 

It is impossible to calculate the density of infinitely intensive and infinitely extensive-intensive numeric structures since they can 

construct an infinite quantity of numbers in a given interval. However, we can obtain meaningful information about the way in 

which a numeric structure grows by measuring its partial size; that is, within a specific interval at a specific stage of its 

construction process. 

 

Standard construction process 

 

We will establish the following as the standard process for the construction of any numeric structure 𝑛𝑆{Λ}: 
Starting with (0) and moving forward one unit at a time, we will take each non-negative integer and, subsequently, its opposite 

negative integer to make all possible combinations of them in (Λ) with themselves and with all other integers previously 

combined in (Λ). 

The following would be the standard construction process for 𝑛𝑆 {ℤ/ℕ}: 

 

 
 

Stage of construction 

 

For any non-negative integer (𝑥), we will say that 𝑛𝑆{Λ} is on the stage (𝑥) of its construction when the last number of the 

sequence constructed under the ongoing standard construction process is the last possible combination of (𝑥)’s opposite negative, 
if applies, (otherwise, (𝑥) itself) with itself and all other integers already used in the construction process. 

For instance, we say that 𝑛𝑆 {ℤ/ℕ} is on stage (0) when the standard construction process has produced only (0/1) or on stage (1) 

when the process has just finished with the construction of (1/1, -1/1) or on stage (2) when it has just completed the numbers 

produced by the following combinations (0/2, 1/2, -1/2, 2/2, -2/2). 

 

Measurement of the partial size of 𝒏𝑺{𝚲} 

 

Once we have decided the finite interval (𝑎, 𝑏) and the construction stage for which we want to measure the size of a given 

𝑛𝑆{Λ}, we can proceed to count the numbers existing within that interval at that stage of construction (Table 1). 

The following chart compares the quantity of numbers (embedded values) existing in two different numeric structures of the 

same shape (real/positive/uniform/infinitely extensive-intensive), at three different construction stages and within three different 

intervals: 

 

Stage Interval 

(0,1] (0,2] (0,3] 

𝑛𝑆 {ℕ/ℕ}   𝑛𝑆{ℕ√ℕ} 𝑛𝑆 {ℕ/ℕ}  𝑛𝑆{ℕ√ℕ} 𝑛𝑆 {ℕ/ℕ}  𝑛𝑆{ℕ√ℕ} 
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4 6 1 9 9 10 10 

8 22 1 32 41 36 46 

15 72 1 108 163 120 175 

Table 1. The give table shows compares the quantity of numbers (embedded values) existing in two different numeric structures 

of the same shape (real/positive/uniform/infinitely extensive-intensive), at three different construction stages and within three 

different intervals. 

 

This method cannot give the total size of a complete infinite numeric structure because there is not such a thing as a complete 

infinite numeric structure; but it provides accurate information about the way infinite intensive and extensive-intensive numeric 

structures grow, which could be more useful than saying that their cardinal is N
0
, N

1
, N

2
, … and, certainly, it makes much more 

sense. 

Shape and potential are two different and closely related qualitative properties of numeric structures. Size, on the other hand, is a 

quantitative method for comparing different numeric structures of similar shape and potential. 

  

Questions for further developments on the theory of numeric structures 

 

Some interest questions arise from the initial development of the Theory of Numeric Structures: 

Unspecifiable values: I have proved that between any two real numbers there exist at least one unspecifiable value; a segment of 

the real value-line (open interval) for which no utter expression can exist. From that, some hypotheses can be presented for 

confirmation or refutation: 

Υ hypothesis: There exists an unspecifiable value in the real value-line called the unspecific particle (Υ), for which the following 

is true: 

 

 
 

Υ-function hypothesis: All unspecifiable values in the real value-line can be defined as a function of the real numbers as 

follows: 

 

𝑢 = 𝑥 + Υ 

𝑣 = 𝑥 − Υ 

 

Where (𝑢) and (𝑣) are different unspecifiable values, (𝑥) is a real number and (Υ) is the unspecific particle. 
 

Hypothesis of non-determinability: Any operation that implies the addition of two or more unspecifiable values of the same 

sign is undefined. E.g. 2Υ and −2Υ are undefined. 

Theorem of parity in complex numbers: I have shown how the Theorem of parity is applicable to any numeric structure that 

has its domain within the real or imaginary value lines. Does it apply the same way to numeric structures that have their domain 

in both the real and the imaginary value lines? 
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