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INTRODUCTION

In general relativity static electric fields alter the metric of
spacetime through their energy-momentum tensor[1]
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is the electromagnetic tensor, ,0,0,0)ö(Aì   is the four-po-
tential and  is the dielectric constant of the medium.
ì
íT  enters the r.h.s. of  the Einstein equations
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where  is the Einstein constant. We have taken into ac-
count that 0Tì

ì  . In addition, the Maxwell equations are
coupled to gravity through the covariant derivatives of
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where g is the metric�s determinant and usual derivatives
are denoted by subscripts. The electric field is ì0ìì öFE  .
Obviously, ì

íT  from Eq. (1) contains only quadratic terms
in ìö .

This allows to hide  and  by normalizing the electric
potential to a dimensionless quantity
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The factor 8 is chosen for future convenience and we
use CGS units. This is a much more efficient way to get
rid of the constants in the Einstein-Maxwell equations
than the choice of  relativistic units.

ROOT GRAVITY

Let us confine ourselves to the axially-symmetric static
metric[2]

ds2 = (dx0)2 - -1[e2k (dr2 + dz2) + r2 d2] (6)

where x0 = ct, x1 = , x2 = r, x3 = z are cylindrical coor-
dinates,  = e2u and u is the first, while k is the second
gravitational potential. Both of them depend only on r
and z.
For the electric field one has

rrE  , zzE  (7)

The field equations read
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where  = 
rr
 + 

zz
 + 

r
 / r is the Laplacian. We have

used the definition given in Eq. (5).
The first two equations determine  and . After that k is
determined by integration.
Weyl electrovacuum solutions[3] are obtained when the
gravitational and the electric potential have the same equi-
potential surfaces,  = (). Eqs. (8-9) yield
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which gives

 = A + B + 2 (13)

where A and B are arbitrary constants. Replacing it in Eqs.
(8-9) one comes to an equation for .

)(
BA

2B 2
z

2
r2





 (14)

Let us make one more assumption, that  depends on r,
z through some function (r, z) which satisfies the Laplace
equation  = 0. Then () is determined implicitly from
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An important equality follows

ii f , 
ii )(f  (16)

where i = r, z.
Eqs. (10-11) become
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where D = B2 - 4A. Thus in Weyl electrovac solutions the
harmonic master potential determines the electric and the
gravitational fields.
The theory should be invariant under gauge transforma-
tions, which in this case are simply translations:  =  +
a with a being an arbitrary constant.
Eqs.(1-4) and (7-11) are gauge invariant, but Eq.(13) is
not because A, B change into

A = A + Ba + a2, B = B + a (18)

This happens because f depends directly on the electric
potential and not on its derivatives.
In some papers this is used to set B to zero and eliminate
the linear term.
In this paper we shall show that this is not correct. In fact,
the general solution (13) stays gauge invariant because A,
B are also arbitrary constants. In a particular solution A,
B should be fixed and should not change under a gauge
transformation. This is possible when after a is selected
one compensates its effect by choosing A, B in such a
way that A, B stay fixed at any particular value. Eq.(18)

shows that this always can be done and in this way the
gauge invariance of  f  is restored. For example, due to
Eq.(5), the electric potential is very small everywhere for
realistic fields and it is natural that it should go to zero at
infinity or when the field is turned off. Then asymptotic
flatness requires to set A = 1 and this condition can be
kept in spite of  possible gauge transformations. The co-
efficient B is not determined by the system of  equations
(8-9) and the Weyl conditions. One can not just put it to
zero by a gauge transformation. In fact, arguments were
given in[4,5] that its value is 2. Then f becomes a perfect
square, while k vanishes and the space part of the metric
is conformally flat. It should be noticed that D = D so
that the vanishing of k is gauge invariant.
The presence of  the linear term in  with a coefficient of
order unity is not just of academic interest. Because of
the gravitational potential a particle at rest feels an accel-
eration[1]
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Covariant and contravariant components coincide in prac-
tice because for realistic electric fields the metric is almost
flat. Eq.(7) shows that the first term is proportional to the
electric field, which due to Eq.(16) may be derived also
from the master potential because  is extremely close to
one.
Let us note that
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where G = 6.674  10-8 cm3 / g  s2 is the Newton con-
stant and c = 2.998  1010 cm / s is the speed of light.
Due to the square root, the first coefficient is 1023 times
bigger than the second and for realistic fields and media
this cannot be compensated by the squares of potentials
and the additional å  factor in the second term. The lat-
ter is typical for linear perturbation theory.
In relativistic units G = c = 1 the difference does not
show up. Thus, provided that B = 2, the linear term is
essential and the coupling of electromagnetism to gravity
appears to be much stronger than it is usually thought. It
causes a number of effects, the most prominent being
the movement of a usual capacitor towards one of its
poles. In this case there is plane symmetry in the bulk, 
and  depend only on z, which means they are functionally
related and the general solution belongs to the Weyl class.
However, Eqs.(10,17) show that k depends on r and breaks
the symmetry unless D = 0, which gives B = 2. Putting
the usual formula for the electric field inside a capacitor
into Eq.(19) gives for the acceleration which acts on the
dielectric inside it
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where 
0
 is the potential difference between the plates

and d is the distance between them.
A more detailed derivation can be found in Refs.[4,5].

RESULT AND DISCUSSION

If  the capacitor is hanging freely, this effect may be tested
experimentally. To increase the acceleration it is advanta-
geous to make d small (typically 0.1cm < d< 1cm), to raise


0
 up to 2 × 104 CGS (six million volts, which is possible)

and to take a ferroelectric material with  in the range of
104, like barium titanate (B

a
T

 i
O

3
) or many others. Thus

/då  may reach in principle 103 and the maximum ac-

celeration g
z,max

 = 5.2g
earth

 is more than enough to counter
Earth�s gravity.
This effect has been discovered by the prominent electri-
cal engineer Thomas Townsend Brown (1905-1985) al-
ready in 1923 together with Prof. P. A. Biefeld and called
the Biefeld-Brown effect[6]. Brown worked on his own
on it up to the sixties with high voltage equipment in the
range 70 - 300kV. He didn�t give a formula like Eq.(21)

but stressed that the effect is bigger the closer the con-
denser plates, the higher the voltage and the greater the ,
which is in accord with Eq.(21). He also found that the
capacitor moves towards its positive pole, resolving ex-
perimentally the sign ambiguity in the above formula. There
have been speculations that the effect might follow from
some of  the Einstein�s unified theories. Today one would
mention string theory or some other alternative gravita-
tional theory. However, it appears that the effect is a part
of  usual General Relativity due to its strong nonlinearity.
It is worth to repeat Brown�s experiments in different
laboratories and check formula (21).
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