

VIBRATIONAL SPECTROSCOPIC STUDY OF 2-AMINOETHYLSULFONIC ACID

Y. SHEENA MARY^a, C. YOHANNAN PANICKER^{*} and HEMA TRESA VARGHESE

Department of Physics, TKM College of Arts and Science, KOLLAM (Kerala) INDIA ^aDepartment of Physics, Fatima Mata National College, KOLLAM (Kerala) INDIA

ABSTRACT

The vibrational wavenumbers of 2-aminoethylsulfonic acid were calculated using Gaussian03 software package at different levels and the fundamental modes are assigned. The predicted infrared and Raman activities are reported. The first hyperpolarizability is calculated. 2-Aminoethylsulfonic acid is an attractive object for future studies of non-linear optics. The calculated geometrical parameters (DFT) are in agreement with the reported experimental values.

Key words: Sulfonic, HF, DFT, Hyperpolarizability.

INTRODUCTION

Amino acids, which constitute a very important class of biomolecules, can act as potential sulfur and nitrogen donor ligands. It has been found that they utilize their functional groups as fully as possible in metal conduction.¹ Copper complexes of amino acids present important pharmacological interest as several of them show a wide spectrum of effects, including anti-inflammatory, antiulcer, anticonculsant and antitumoral activities.²⁻⁴ Summayya *et al.*⁵ reported the vibrational spectroscopic studies and *ab initio* calculations of L-glutamic acid -5- amide. The vibrational and Raman spectrum of aspartic acid dipeptide and glutamic acid dipeptide were reported by Navarrete *et al.*⁶ Taurine (2-aminoethylsulfonic acid) is a substance found in several organs of the human body such as heart, brain, liver, muscle and fluids such as bile.⁷ It is believed that the 2-aminoethylsulfonic acid (taurine) plays a fundamental role in neuronal mechanisms and its low concentration in the body can be associated with neurological abnormalities.⁸ Lima *et al.*⁹ reported the high pressure Raman study of taurine crystal. In the present study, we have calculated the vibrational wavenumbers by using HF and DFT methods and compared with

^{*}Author for correspondence; e-mail : cyphyp@rediffmail.com

the reported experimental values. Many organic molecules containing conjugated π electrons and characterized by large values of molecular first hyperpolarizabilities have been analyzed by means of vibrational spectroscopy.¹⁰ In this context, the hyperpolarizability of the title compound was calculated theoretically.

COMPUTATIONAL DETAILS

Calculations of the title compound were carried out with Gaussian03 program¹¹ using the Hartree-Fock and DFT (B3LYP) levels of theory predict the molecular structure and vibrational wavenumbers. Molecular geometry (Fig. 1) was fully optimized by Berny's optimization algorithm using redundant internal coordinates. Harmonic vibrational wavenumbers were calculated using the analytic second derivatives to confirm the convergence to minima of the potential surface. The wavenumber values computed contain known systematic errors and hence, we have used scaling factors 0.8929 and 0.9613 for HF and DFT methods.¹² The absence of imaginary wavenumbers of the calculated vibrational spectrum confirms that the structure deduced corresponds to minimum energy. The optimized geometrical parameters (DFT) are given in Table 1.

Bond lengths (Å)		Bond an	gles (°)	Dihedral ar	Dihedral angles (°)		
S ₁ -O ₂	1.4575	A(2,1,3)	120.8	D(2,1,4,5)	-116.8		
S ₁ -O ₃	1.4655	A(2,1,4)	108.7	D(3,1,4,5)	14.9		
S_1-O_4	1.6509	A(2,1,6)	109.0	D(6,1,4,5)	129.6		
S_1-C_6	1.8043	A(3,1,4)	106.6	D(2,1,6,7)	-178.5		
O ₄ -H ₅	0.9762	A(3,1,6)	110.5	D(2,1,6,8)	-61.8		
C ₆ -H ₇	1.0940	A(4,1,6)	98.9	D(2,1,6,9)	59.4		
C ₆ -H ₈	1.0926	A(1,4,5)	106.2	D(3,1,6,7)	46.5		
C ₆ -C ₉	1.5333	A(1,6,7)	106.2	D(3,1,6,8)	163.1		
C ₉ -H ₁₀	1.1022	A(1,6,8)	107.3	D(3,1,6,9)	-75.7		
C ₉ -H ₁₁	1.0939	A(1,6,9)	111.1	D(4,1,6,7)	-65.1		
C ₉ -N ₁₂	1.4645	A(7,6,8)	109.2	D(4,1,6,8)	51.6		
N ₁₂ -H ₁₃	1.0178	A(7,6,9)	112.1	D(4,1,6,9)	172.8		

Table 1: Optimized geometry of the molecule, atom labeling according to Fig. 1.

Cont...

Int. J. Chem. Sci.: 8(2), 2010

Bond lengths (Å)		Bond ang	gles (°)	Dihedral an	Dihedral angles (°)		
N ₁₂ -H ₁₄	1.0190	A(8,6,9)	110.8	D(1,6,9,10)	54.9		
		A(6,9,10)	109.3	D(1,6,9,11)	-61.8		
		A(6,9,11)	108.5	D(1,6,9,12)	-179.4		
		A(6,9,12)	108.3	D(7,6,9,10)	-63.8		
		A(10,9,11)	107.3	D(7,6,9,11)	179.5		
		A(10,9,12)	114.7	D(7,6,9,12)	61.9		
		A(11,9,12)	108.5	D(8,6,9,10)	174.0		
		A(9,12,13)	109.7	D(8,6,9,11)	57.3		
		A(9,12,14)	110.1	D(8,6,9,12)	-60.3		
		A(13,12,14)	106.2	D(6,9,12,13)	166.2		
				D(6,9,12,14)	-77.3		
				D(10,9,12,13)	-71.4		
				D(10,9,12,14)	45.1		
				D(11,9,12,13)	48.5		
				D(11,9,12,14)	165.1		

RESULTS AND DISCUSSION

In associated aliphatic and alicyclic primary amines, the NH_2 stretching vibration^{13,14} occurs in the range 3390 - 3260 cm⁻¹. In the vibrational spectra of amino acids, the NH_2

stretching modes^{5,15} are reported at around 3400 and 3200 cm⁻¹. In the present case, the DFT calculations give NH₂ stretching modes at 3423 and 3340 cm⁻¹. The NH₂ scissoring vibration¹⁴ gives rise to a broad band in the region 1600 ± 50 cm⁻¹ and the rocking/twisting NH₂ mode is expected in the region 1160 ± 140 cm⁻¹. Associated primary amines show a characteristic broad ω NH₂ band between 1000 and 700 cm⁻¹, with a maximum absorption¹⁴ at 840 ± 55 cm⁻¹. The NH₂ torsion is expected in the low wavenumber region.¹⁴ For the title compound, the theoretical calculations give the NH₂ deformation bands at 1635, 1142, 773 cm⁻¹. The CN stretching vibration¹⁶ is expected in the region 1250-1020 cm⁻¹ and the band at 1104 cm⁻¹ is assigned as this mode.

The vibrations of the CH₂ group, the asymmetric stretch, symmetric stretch, scissoring vibrations, and wagging vibrations appear in the regions 3000 ± 50 , 2965 ± 30 , 1455 ± 55 and 1350 ± 85 cm⁻¹, respectively.^{14,17} All these vibrations are identified and assigned (Table 2). The rocking modes¹⁴ of CH₂ is expected in the range 895 ± 85 cm⁻¹ and the torsional modes are seen in the low wavenumber range. Baran *et al.*¹⁵ reported the CC stretching bands in the range 870 - 1117 cm⁻¹ and CC bending modes below 400 cm⁻¹. Summayya *et al.*⁵ reported these bands at 999, 899, 399, 347, 272, 231 and 211 cm⁻¹. In the present case, the CC stretching mode is assigned at 1009 cm⁻¹.

HF/6-31G*			HF/6-311G*			В	Assign		
v (cm ⁻¹)	IR Intensity	Raman activity	v (cm ⁻¹)	IR Intensity	Raman activity	v (cm ⁻¹)	IR Intensity	Raman activity	ments
3606	223.02	61.18	3671	195.64	66.04	3554	114.59	91.01	υOH
3413	3.37	82.66	3418	1.51	80.34	3423	0.25	95.43	$\upsilon_{as} NH_2$
3336	1.67	105.31	3351	0.52	105.74	3340	0.57	130.04	$\upsilon_s NH_2$
2977	4.29	37.96	2960	6.58	36.57	3042	2.67	39.92	$\upsilon_{as}CH_2$
2939	13.76	55.49	2919	15.60	53.12	2996	9.68	43.14	$\upsilon_{as}CH_2$
2916	2.96	83.41	2900	3.77	89.70	2977	1.81	90.93	$\upsilon_s CH_2$
2853	45.06	76.00	2839	47.09	79.46	2883	45.33	79.09	$\upsilon_s CH_2$
1644	33.36	6.68	1660	38.61	4.69	1635	22.69	9.78	δNH_2
1490	0.63	9.20	1481	1.57	7.37	1486	1.11	9.28	δCH_2

Table 2: Calculated wavenumbers (scaled) and assignments

Cont...

HF/6-31G*		HF/6-311G*			В	A			
v (cm ⁻¹)	IR Intensity	Raman activity	v (cm ⁻¹)	IR Intensity	Raman activity	v (cm ⁻¹)	IR Intensity	Raman activity	ments
1432	10.28	10.95	1424	10.71	8.76	1428	5.72	13.04	$\delta \mathrm{CH}_2$
1412	15.88	1.18	1409	15.68	0.95	1390	11.31	1.85	ωCH_2
1345	276.86	2.61	1336	237.83	3.52	1320	108.45	6.28	ωCH_2
1322	21.76	6.98	1321	81.40	4.70	1307	85.47	6.23	$\upsilon_{as}SO_2$
1288	14.91	6.58	1285	22.43	4.51	1266	18.92	5.69	$\tau \mathrm{CH}_2$
1239	10.94	2.38	1238	10.58	1.55	1216	5.56	2.23	$\tau \mathrm{CH}_2$
1170	283.16	2.46	1161	303.37	2.31	1142	197.05	4.37	$\tau/\rho NH_2$
1118	30.26	4.56	1115	15.41	4.36	1104	8.03	5.22	υCN, δSOH
1110	22.18	5.34	1107	27.42	5.10	1078	39.60	7.25	$\upsilon_s SO_2$
1053	11.89	8.41	1046	12.14	7.42	1057	5.66	7.50	υSO(H)
1027	14.37	9.70	1023	15.57	8.12	1009	4.42	8.77	υCC
940	5.72	3.96	939	4.15	3.76	943	1.63	1.91	γОН, рСН2
854	182.20	2.32	853	151.39	1.53	838	149.84	4.38	ρCH_2
848	270.63	5.70	843	320.14	4.29	773	123.81	3.11	υOS, ωNH2
778	11.70	11.90	772	7.26	10.73	763	98.95	1.52	υCS
762	7.57	1.20	757	6.43	1.88	721	44.88	20.11	δSO_2
564	138.69	4.15	567	148.03	4.10	524	87.76	5.39	ωSO_2
497	41.47	3.28	499	47.07	3.44	464	19.06	4.73	$ ho SO_2$
426	16.01	1.27	433	19.12	1.52	396	11.18	1.68	δCC
342	15.87	0.64	345	17.44	0.91	333	19.00	1.22	δCSO ₃ H
316	1.72	4.69	316	1.20	4.65	310	3.35	6.21	δCN
312	2.95	1.34	313	1.61	1.22	292	2.87	1.81	tCH ₂

Cont...

HF/6-31G*			HF/6-311G*			В	Assign		
v (cm ⁻¹)	IR Intensity	Raman activity	υ (cm ⁻¹)	IR Intensity	Raman activity	v (cm ⁻¹)	IR Intensity	Raman activity	ments
236	59.75	1.91	229	57.82	1.28	238	55.24	2.39	tCH ₂
176	113.79	1.48	156	57.88	0.69	172	83.77	1.71	$t\mathrm{NH}_2$
145	7.04	0.46	127	84.57	1.58	136	11.02	0.85	tSOH
89	2.90	0.30	88	2.69	0.27	90	3.60	0.35	tCH ₂ NH ₂
78	6.51	0.22	79	8.72	0.21	66	3.98	0.30	tSO_2

υ-stretching; δ-in-plane deformation; γ-out-of-plane deformation; ω -wagging; t-torsion; τ-twisting; ρ-rocking; subscripts: as-asymmetric, s-symmetric.

The spectra of esters of sulfonic acids are dominated by SO₂ stretching and SO stretching vibrations and expected in the range^{14,16} 1165-1410 cm⁻¹. By comparison with OH bending frequencies in sulfuring acid and other sulfonic acids SOH bend¹⁸, the band at around 1118 cm⁻¹ is assigned as SOH bending. The SO(H) stretching mode is reported at 1026 cm⁻¹ for sulfamic acid¹⁹ and at around 1020 cm⁻¹ for aminobenzene sulfonic acids²⁰ and at 1035 cm⁻¹ for pyridine-3-sulfonic acid.²¹ For the title compound. The SO₂ and SO stretching vibrations are assigned at 1307, 1078 and 1057 cm⁻¹. Usually the SO₂ deformations absorb with a weak to moderate intensity. The SO₂ scissors¹⁴ absorb in the range 565 ± 45 cm⁻¹. In the present case, the DFT calculations give the deformation bands of SO₂ at 721, 524, 464 cm⁻¹ and at 333 cm⁻¹.

The reported values of S=O in SO₂ and SO₃ molecules are 1.4308, 1.4469Å and 1.4173, 1.4261Å, respectively.²³ In the present case, the DFT calculations give the S=O bond length as 1.4575, 1.4655Å and S-O bond length as 1.6509Å. Demaison *et al.*²⁴ reported S-O in the range 1.5750-1.6119Å, S=O in the range 1.4111-1.4301Å and according to Miller *et al.*²⁵ S=O is 1.446Å and S-O is 1.627Å. In the amino group, the nitrogen atom is likely to be in the plane with a torsion angle S₁-C₆-C₉-N₂ = -179.4° and the oxygen atom O₄ is likely to be out-of-plane with a torsion angle O₄-S₁-C₆-C₉ = 172.8° (or 7.2°). The C-N distance in anilinium sulfate²³ is 1.4196Å where as in the present case, C-N = 1.4645Å. The O=S=O angles are reported as²³ 121° and for the title compound, the corresponding value is 120.8°. The O-S=O angle is reported in the range²³ 105.2-108.5° and in the present case, the range is 106.6-108.7°.

Analysis of organic molecules having conjugated π -electron systems and large hyperpolarizability using infrared and Raman spectroscopy has been evolved as a subject of research.²⁶ The potential application of the title compound in the field of non-linear optics demands the investigation of its structural and bonding features contributing to the hyperpolarizability enhancement, by analyzing the vibrational modes using the IR and Raman spectrum. The calculated first hyperpolarizability of the title compound is 0.45×10^{-30} esu, which is comparable with the reported values of similar derivatives.²⁷ It is concluded that the title compound is an attractive object for future studies of non-linear optics.

REFERENCES

- 1. B. Y. K. Ho, J. A. Zubieta and J. J. Zuckerman, J. Chem. Soc. Commun., 2, 88 (1975).
- 2. J. R. J. Sorenson, J. Med. Chem., 19, 135 (1976).
- 3. E. J. Baran, Acta Farm. Bonaerense., 4, 125 (1985).
- 4. E. J. Baran, Mini Rev. Med. Chem. 4, 1 (2004).
- 5. A. Sumayya, C. Y. Panicker, H. T. Varghese and B. Harikumar, Rasayan J. Chem. 1, 548 (2008).
- 6. J. T. L. Navarrete, V. Hernandez and R. J. Ramirez, J. Mol. Struct., 348, 249 (1995).
- 7. S. A. Laidlaw, J. A. Sturman and J. D. Kopple, J. Nutr., 117, 1945 (1987).
- J. A. Sturman, R. M. Moretz, J. H. French and H. M. Wisniewski, J. Neurosci. Res., 13, 405 (1985).
- 9. R. J. C. Lima, A. M. R. Teixeira, P. T. C. Freire, J. M. Sasaki, A. P. Ayala, F. E. A. Melo and J. M. Filho, J. Raman Spectrosc., **32**, 27 (2001).
- P. L. Anto, H. T. Varghese, C. Y. Panicker and D. Philip, J. Raman Spectrosc., doi. 10.1002/jrs.2406.
- 11. M. J. Frisch et al. Gaussian03, Revision C.02, Gaussian Inc., Wallingford CT (2004).
- 12. F. B. Foresman and E. Frisch, in E. Frisch, (Ed.) Exploring Chemistry with Electronic Structure Methods, A Guide to Using Gaussian, Gaussian, Pittsburg, PA (1996).
- 13. L. Segal and F. V. Eggerton, Appl. Spectrosc., 15, 112 (1961).
- 14. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).
- 15. E. J. Baran, I. Viera and M. H. Torre, Spectrochim. Acta, 66A, 114 (2007).

- 16. R. M. Silverstein and F. X. Webster, Spectrometric Identification of Organic Compounds, Ed. 6, Wiley, Asia (2003).
- 17. N. B. Colthup, L. H. Daly and S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Ed. 2, Academic Press, New York (1985).
- 18. S. M. Chakalackal and F. E. Stafford, J. Am. Chem. Soc., 88, 4815 (1996).
- 19. D. Philip, A. Eapen and G. Aruldhas, J. Solid State Chem., 116, 217 (1995).
- 20. L. Ganguly, C. I. Jose and A. B. Biswas, Spectrochim. Acta, 24A, 215 (1968).
- 21. C. Y. Panicker, H. T. Varghese, D. Philip, H. I. S. Nogueira, Spectrochim. Acta, 64A, 744 (2006).
- 22. A. Given, H. Rothe, A. Loewenschuss and C. J. Nielsen, Phys. Chem. Phys., 4, 255 (2002).
- 23. P. L. Anto, R. J. Anto, H. T. Varghese, C. Y. Panicker, D. Philip and A. G. Brolo, J. Raman Spectrosc., doi:10.1002/jrs2323.
- 24. J. Demaison, M. Herman, J. Lievin and H. D. Rudolph, J. Phys. Chem., **111A**, 2602 (2007).
- 25. Y. Miller, G. M. Chaban and R. B. Gerber, J. Phys. Chem., 109A, 6565 (2005).
- M. Tommasini, C. Castiglioni, M. Del Zoppo and G. Zerbi, J. Mol. Struct., 480, 179 (1999).
- 27. H. T. Varghese, C. Y. Panicker, V. S. Madhavan, S. Mathew, J. Vinsova and C. Van Alsenoy, J. Raman Spectrosc., doi:10.1002/jrs.2265.

Accepted : 06.03.2010