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ABSTRACT 

Vapor-liquid equilibrium data may be readily evaluated and extended when they are calculated as activity 
coefficients. The equations proposed by Van Laar, Margulas, Wilson, NRTL and UNIQUAC, which express the activity 
coefficients of the components of a mixture as functions of the liquid composition and empirical constants, are capable of 
fitting most of the available vapor liquid equilibrium data. Equations of state play an important role in chemical engineering 
design and they have assumed an expanding role in the study of the phase equilibria of fluids and fluid mixtures. 
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INTRODUCTION 

The term “Vapor-Liquid Equilibrium (VLE)” refers to systems in which a single liquid phase is in 
equilibrium with its vapor, schematic diagram of the vapor-liquid equilibrium is illustrated in Fig. 1. In 
studies of phase equilibrium, however, the phase containing gradients is not considered. Wherever gradients 
exist there is a tendency for change with time; hence there is no equilibrium. On the other hand, there can be 
two or more phases, each of which is homogenous throughout, with no tendency for any change in 
properties with time, even though the phases are in intimate physical contact with one another. The latter is 
the condition that we denote by the term “phase equilibrium”. In a condition of phase equilibrium there are 
some properties that are drastically different between the phases and others that must be identical for all 
phases to prevent a change in properties within individual phases from occurring1. The thermodynamic 
equilibrium determines how components in a mixture are distributed between phases. 

 

● liquid 

▲vapor 

Fig. 1: Schematic diagrams illustrating the vapor-liquid equilibrium of binary system1 
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The system is in the equilibrium state, if only reversible process can occur in it. 

This verbal formulation makes it possible mathematically to express the condition of equilibrium: 

Let us consider a closed system on which a constant pressure is acting as the only external force. In 
an infinitesimal reversible process at constant temperature and pressure, the free enthalpy of this system 
does not change; hence at equilibrium we have – 

 dT = 0,   dP = 0,   dG = 0  …(1) 

where T is the absolute temperature, P the pressure and G the free enthalpy of the system. This 
formulation of the condition of equilibrium is sufficiently general for all cases with which we shall be 
concerned2. 

Vapour liquid equilibrium laws  

Vapour liquid equilibria are best understood with the help of simple, empirical laws which may, 
however, only apply within certain limits. 

Dalton’s law 

It describes the vapour phase: 

 pi"/pt" = ni"/nt" …(2) 

where p is the pressure and n the number of moles of substance. The subscript i denotes component i. 
since ni"/nt" = yi (where yi is the mole fraction of component i in the vapour). 

This law generally holds low pressure (pt < pcr, where pcr is the critical pressure). At higher 
pressure, however, it may require modification instead of using pressure p, the equation is written in terms 
of fugacity f: 

 fi" = yi ft"  …(3) 

Raoult’s law 

The liquid phase is described by Raoult’s law giving a relation for the partial pressure pi' of 
component i over a liquid mixture: 

 pi' = xi pi
o   …(4) 

According to Equation (4) the partial pressure pi' depends only on the vapour pressure pi
o of the pure 

component i and its liquid mole fraction xi; it is not affected by the nature and concentration of other 
substances in the mixture. Raoult’s law holds only as the forces of interaction between different types of 
molecules are equal (ideal mixture). Nonideal liquid phase behavior is described by using the activity 
coefficient γi which is defined as follows: 

 pi' = γixi pi
o   …(5) 
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Equations (4) and (5) are valid only for mole fractions. The activity coefficient γi is often called as 
“Raoult’s law correction factor” and is highly concentration dependent. Eq. (4) and (5) apply only at 
temperatures below the critical temperature (T < Tcr). 

Henry’s law 

At higher temperatures, Henry’s law is applied instead of Raoult’s law: 

 pi' = Hijxi   …(6) 

Where Hij is the Henry’s coefficient for substance i in solvent j. Again, a correction must be made 
for nonideal mixtures by using the activity coefficient γi : 

 pi' = Hijγixi   …(7) 

This relationship is analogous to Raoult’s law, except that the proportionality constant3. 

Vapour liquid equilibrium in ideal systems 

(I) Binary systems 

(a) At constant temperature 

Let us first consider a system with the two constituents A and B; according to equation (4) 

 PA = o
AA px , …(8) 

 PB = o
BB px , …(9) 

The total pressure, according to Dalton’s law, is given by the sum of the partial pressures: 

 p = pA + pB = o
BB

o
AA pxpx +  …(10) 

As the system is binary, it is possible to substitute (1-xA) for xB; after this modification: 

 P  = xA
o
B

o
B

o
A ppp +− )( )  …(11) 

Equation (11) states that the total pressure over an ideal solution is, at constant temperature, a linear 
function of composition. 

According to Dalton’s law we have for the vapour phase: 

 pA = yAp, …(12) 

 pB = yBp = (1 – yA)p, …(13) 

where yA denotes the mole fraction of constituent A in the vapour phase and similarly for yB. 

It follows from the relations (8), (9), (12) and (13) that  

 yAp = ,o
AA px  …(14) 

 yBp = ,o
BB px  …(15) 

On taking the ratio of these equations we find 
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For an ideal solution α is a constant independent of the composition; it is called the relative volatility 
or enrichment ratio. 

Equation (16) states that the ratio of the mole fractions of the constituents A and B in the vapour 
phase divided by the corresponding ratio in the liquid phase is constant. 

From (11) and (12) it is possible after elimination of xA to obtain a relation expressing the isothermal 
dependence of the total pressure on the composition of the vapour phase 

 p = 
)1( ′−− αα A

o
A

y
p

 …(17) 

or 

 p = 
)( ′−− o

B
o
AA

o
A

o
B

o
A

ppyp
pp

 …(18) 

The relation giving the dependence between the mole fraction of constituent A in the liquid phase 
and its mole fraction in the vapour phase is obtained from equation (18) by a simple rearrangement: 

 yA = 
)1(1 ′−+ α

α

A

A

x
x

 …(19) 

(b) At constant pressure 

Practically speaking however knowledge of the isobaric vapour-liquid equilibrium is more 
important. In this case we have by equation (14) - 

 p = pA + pB = )()1()( TpxTpx o
BA

o
AA

−+   …(20) 

We write o
i

p (T) to emphasize that the vapour pressures of the pure constituent i dependes on the 

temperature, which in this case is not constant. 

The relation giving the dependence between the compositions of the vapour and liquid phases is 
given by the equation – 

 yA = 
]1)([1

)(
−+ Tx

Tx

A

A

α
α

 …(21) 

α(T) = )(/)( TpTp o
B

o
A

is generally speaking a function of temperature; however the ratio of the vapour 

pressures of the pure constituents varies but little in a short range of temperatures, so that α can often be 
considered as constant over the entire range of compositions. 

(II) Multicomponent systems 

In a multicomponent system containing an ideal liquid phase and a vapour phase that obeys the ideal 
gas laws, it is possible to derive relations similar to those for binary systems. 
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For an arbitrary constituent I we have 

 pI = o
II px  …(22) 

 yI = 
∑ =

= K

AJ
o
JJ

o
III

px

px
p
p

 …(23) 

By division of the numerator and denominator of the right side of (23) by o
Kp we obtain after a 

simple rearrangement. 

 yI = 
)1(...)1()1(1 ,11
′−++−+−+

−− KKKBKBIKA

IKI

xxx
x

ααα
α

 …(24) 

where αIK = o
K

o
A

AKo
K

o
A

p
p

p
p

=α,  etc. 

Thus in a ternary system- 

 pA = o
AA

px  …(25) 

 pB = ,o
BB

px  …(26) 

 pC = ,o
CC

px  …(27) 

 p = ,)1( o
CBA

o
BB

o
AA

pxxpxpx −−++  …(28) 

 yA =
'pxxpxpx

px
p
p

o
CBA

o
BB

o
AA

o
AAA

)1( −−++
=  …(29) 

 yB =
'pxxpxpx

px
p
p

o
CBA

o
BB

o
AA

o
BBB

)1( −−++
=  …(30) 

By division of numerator and denominator of the right sides of (29) and (30) by o
Cp and by 

substitution of o
C

o
AAC pp /=α  and o

C
o
BBC

pp /=α  we obtain – 

 yA =
)1()1(1 −+−−

BCBACA

ACA

xx
x

αα
α

 …(31) 

 yB =
)1()1(1 −+−−

BCBACA

BCB

xx
x

αα
α

 …(32) 

Strictly speaking, equations (31) and (32) are valid only at constant temperature; they can however 
be used for the case of constant pressure in many problems, since the ratio of the vapour pressures of the 
pure constituents is only weakly dependent on temperature, and the ranges of temperature that occur in 
distillation problems are frequently small2. 

Vapour liquid equilibrium in real systems 
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Deviations from ideal behavior are more likely to occur in the liquid phase than in the vapur phase. 
As a result of smaller intermolecular distances, the forces of interaction between molecules in the liquid are 
considerably stronger. In contrast, the vapur phase can be assumed to behave ideally at moderate pressure. 
At higher pressures, the vapur phase must be described by equation of state. The phase behavior of real 
liquids is usually described by means of the activity coefficient γ2,3. 

The method for calculating phase equilibrium in systems that are nonideal in liquid phase only is 
based on the activity coefficient models such as Margules, Van Laar, Wilson, NRTL, UNIQUAC and 
UNIFAC whereas at higher pressure, nonideality in vapor phase is described by equations of state. 

Calculation of phase equilibrium from excess enthlpy 

(1) Margules Equation 

Max Margules introduced in 1895, a simple thermodynamic model for the excess Gibbs free energy 
of a liquid mixture. After Lewis had introduced the concept of the activity coefficient, the model could be 
used to derive an expression for the activity coefficients γi of a compound i in a liquid and the activity 
coefficient is a measure for the deviation from ideal solubility. In Chemical Engineering the Margules' Gibbs 
free energy model for liquid mixtures is better known as the Margules activity or activity coefficient model. 
Although the model is old it has the characteristic feature to describe extrema in the activity coefficient, 
while modern models like UNIQUAC, NRTL and Wilson cannot. 

Margules expressed the excess Gibbs free energy of binary liquid mixtures is as follow, 

 
RT
g E

 = x1x2 (A21x1 + A12x2) …(33) 

The activity coefficient of component i is found by differentiation of the excess Gibbs energy 
towards xi. This yields, when applied only to the first term and using the Gibbs-Duhem equation, 

 ln γ1 = ))(2(
1122112

2
2

xAAAx −+  …(34) 

 ln γ2 = ))(2(
2211221

2
1

xAAAx −+  …(35) 

In here A12 and A21 are constants which are equal to the logarithm of the limiting activity 
coefficients: ln ∞

1
γ  and ln ∞

2
γ respectively4. 

(2) Van Laar Equation 

The Van Laar equation is an activity model, which was developed by Johannes Van Laar in 1910-
1913, to describe phase equilibria of liquid mixtures. The equation was derived from the Van der Waals 
equation. The original Van der Waals parameters didn't give good description of vapor-liquid phase 
equilibria, which forced the user to fit the parameters to experimental results. Because of this, the model lost 
the connection to molecular properties, and therefore it has to be regarded as an empirical model to correlate 
experimental results. 

Van Laar expressed the excess Gibbs free energy of binary liquid mixtures is as follow, 

 
RT
g E

 = 
221121

2112

)/( xAAx
xxA
+

 …(36) 



 M. B. Mane and S. N. Shinde: Vapor Liquid Equilibria…. 

 

164

In here A12 and A21 are constants, which are obtained by regression of experimental vapor-liquid 
equilibria data. 

The activity coefficient of component i is derived by differentiation to xi. This yields: 

 ln γ1 = 
2

2212112

221
12 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ xAxA
xA

A  …(37) 

 ln γ2 = 
2

221112

221
21 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ xAxA
xA

A  …(38) 

This shows that the constants A12 and A21 are equal to logarithmic limiting activity coefficients 
∞
1γln and ∞

2γln , respectively. The model gives increasing (A12 and A21 > 0) or only decreasing (A12 and          
A21 > 0) activity coefficients with decreasing concentration. The model can not describe extrema in the 
activity coefficient along the concentration range5. 

(3) Wilson Equation 

Based on molecular considerations, Wilson (1964) presented the following expression for the excess 
Gibbs energy of a binary solution: 

 
RT
g E

 = – x1 ln (x1 + A12x2) – x2 ln (x2 + A21x1) …(39) 

Activity coefficients derived from this equation are – 

 ln γ1 = – ln (x1 + A12x2) + x2 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+ 1212

21

2211

12

xAx
A

xAx
A

 …(40) 

 ln γ2 = – ln (x2 + A21x1) – x1 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+ 1212

21

2121

12

xAx
A

xAx
A

 …(41) 

In Equation (39) the excess Gibbs energy is defined with reference to an ideal solution in the sense 
of Raoult’s law; Equation (39) obeys the boundary condition that gE vanishes as either x1 or x2 becomes zero. 

Wilson’s equation has two adjustable parameters, A12 and A21. In wilson derivation, these are related 
to the pure-component molar volumes and to characteristic energy differences by – 

 A12 = 
1

2

v
v

 exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

RT
1112 λλ

 …(42) 

 A21 = 
2

1

v
v

 exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

RT
2221 λλ

 …(43) 

Wilson equation has two disadvantages that are not serious for many applications. First, Eqs. (40) 
and (41) are not useful for systems where the logarithms of the activity coefficients, when plotted against x, 
exhibits maxima or minima. (Van Laar equations are also not useful for this case). Such systems, however, 
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are not common. The second and more serious disadvantage of Wilson’s equation lies in its inability to 
predict limited miscibility. When Wilson’s equation is substituted into the equations of thermodynamic 
stability for a binary system, no parameters A12 and A21 can be found that indicates the existence of two 
stable liquid phases. Wilson’s equation, therefore, should be used only for liquid systems that are 
completely miscible or else for those limited regions of partially miscible systems where only one liquid 
phase is present. 

For a solution of m components, Wilson’s equation is – 

 
RT
g E

 = ∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

m

i

m

j
ijji

Ax x
1 1

ln  …(44) 

Where 

 Aij = 
i

j

v

v
 exp ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

RT
iiij
λλ

 …(45) 

 Aji = 
j

i

v
v

 exp ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

RT
jjji λλ

 …(46) 

The activity coefficient for any component k is given by – 

 ln γk = – ln ∑
∑

∑
=

=
=

−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ m

i
m

j ijj

iki
m

j
kjj Ax

Ax
Ax

1
1

1

1  …(47) 

Equation (47) requires only parameters that can be obtained from binary data; for each possible 
binary pair in the multicomponent solution, two parameters are needed6. 

(4) NRTL Equation 

The basic idea in Wilson’s derivation of Eq. (39) follows from the concept of local composition. 
This concept was also used by Renon (1968) in his derivation of the NRTL (nonrandom, two-liquid) 
equation; however, Renon’s equation, unlike Wilson’s is applicable to partially miscible as well as 
completely miscible systems. The NRTL equation for the excess Gibbs energy is – 

 
RT
g E

 = x1x2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+ 2121

2121

2121

2121

Gxx
G

Gxx
G ττ

 …(48) 

Where 

 Τ12 = 
RT

gg 2212 −        Τ21 = 
RT

gg 1121 −  …(49) 

 G12 = exp (–α12τ12)         G21 = exp (–α12τ21) …(50) 

The significance of gij is similar to that of λij in Wilson’s equation; gij is an energy parameter 
characteristic of the i-j interaction. Parameter α12 is related to the non randomness in the mixture; when α12 is 
zero, the mixture is completely random and Eq. (48) reduces to the two-suffix Margules equation. The 
NRTL equation contains three parameters, but reduction of experimental data for a large number of binary 
systems indicates that  α12 varies from about 0.20 to 0.47; when experimental data are scarce, the value of 
α12 can often be set arbitrary; a typical choice is α12 = 0.3. From Eq. (48), the activity coefficients are – 
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 ln γ1 = – 2
2x

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ 2
1212

1212

2

2121

12
21 )( Gxx

G
Gxx

G τ
τ  …(51) 

 ln γ2 = – 2
1x

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ 2
2121

2121

2

1212

12
12 )( Gxx

G
Gxx

G τ
τ  …(52) 

For a solution of m components, the NRTL equation is – 

 
RT
g E

 = ∑
∑
∑

=
=

=−
m

i
m

l jli

m

j jliji
i xG

xG
x

1
1

1
τ

 …(53) 

Where 

 Τji RT

gg iiji −  …(54) 

 Gji = exp (–αjiτji)       (αji = αij) …(55) 

The activity coefficient for any component i is given by - 

 ln γi = ∑
∑
∑

∑∑
∑

=
=

=

==

=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+

m

j
m

l llj

m

j rjrjr
ijm

l llj

ijj
m

l lli

m

j jjiji

xG

Gx

xG

Gx

xG

xG

1
1

1

11

1
τ

τ
τ

 …(56) 

Equations (53) and (56) contain only parameters obtained from binary data6. 

(5) Uniquac Equation 

A critical examination of the derivation of the NRTL equation shows that this equation, like those 
obtained from Wohl’s expansion is more suitable for hE than gE (Renon and Prausnitz, 1969). Further, 
because experimental data for typical binary mixtures are usually not sufficiently plentiful or precise to yield 
three meaningful binary parameters, attempts were made (Abrams, 1975; Maurer 1978; Anderson, 1978; 
Kemeny and Rasmussen, 1981) to derive a two-parameter equation for gE that retains at least some of the 
advantages of the equation of Wilson without restriction to completely miscible mixtures. Abrams derived 
an equation that in a sense, extends the quasichemical theory of Guggenheim for nonrandom mixtures to 
solutions containing molecules of different size. This extension was therefore called the universal quasi-
chemical theory. The UNIQUAC equation for gE consists of two parts, a combinatorial part that attempts to 
describe the dominant entropic contribution, and a residual part that is due primarily to intermolecular forces 
that are responsible for the enthalpy of mixing. The combinatorial part is determined only by the 
composition and by the sizes and shapes of the molecules; it requires only pure component data. The 
residual part, however, depend also on intermolecular forces; the two adjustable binary parameters, therefore, 
appear only in the residual part. The UNIQUAC equation is – 

 
RT
g E

 = 
ialcombinator

E

RT
g

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 + 

residal

E

RT
g

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 …(57) 

For a binary mixture, 
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ialcombinator

E

RT
g

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= x1 ln ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++ *

2

2
22*

1

1
11

2

*
2

2
1

*
1 lnln

2
ln

φ
θ

φ
θφφ

qxqxz
x

x
x

 …(58) 

 
residal

E

RT
g

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )(ln )(ln 121222212111 τθθτθθ ′+′′−′+′′  qx qx  …(59) 

Where the coordination number z is set equal to 10. Segment fraction, φ* and area fractions, θ and θ', 
are given by – 

 *
1φ  = 

2211

11

rxrx
rx
+

       *
2φ  = 

2211

22

rxrx
rx
+

 …(60) 

 *
1θ  = 

2211

11

qxqx
qx

′+′

′
       2θ ′  = 

2211

21

qxqx
qx

′+′

′
 …(61) 

Parameters r, q and q' are pure component molecular structure constants depending on molecular 
size and external surface areas. 

For each binary mixture, there are two adjustable parameters, τ12 and τ21. These, in turn, are given in 
terms of characteristic energies Δu12 and Δu21, by – 

 τ12 = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

TRT
u 1212 exp

αΔ
 …(62) 

 τ21 = exp ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

TRT
u 2121 exp

αΔ
 …(63) 

For many cases, Eqs. (62) and (63) give the primary effect of temperature on τ12 and τ21 
characteristic energies Δu12 and Δu21 are often only weakly dependent on temperature. 

Activity coefficients γ1 and γ2 are given by – 

 ln γ1 = ln ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

′
+ 2

2

1
11

*
2*

1

2
1

1

*
1 ln

2
l

r
r

ql qz
x

θ
θ
θφ

  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′+′
−

′+′
′′+′+′′−

1212

12

2121

21
1221212 )ln(

τθθ
τ

τθθ
τ

θτθθ qq  …(64) 

 ln γ2 = ln ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+

′
+ 2

1

2
2

*
2*

2

2
2

2

*
2 ln

2
l

r
r

l qz
x

θ
θ
θφ

  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′+′
−

′+′
′′+′+′′−

2121

21

1212

12
2112122 )(ln

τθθ
τ

τθθ
τ

θτθθ q q  …(65) 

Where 
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 l1 = )()(
2 1111

−−− rqrz  …(66) 

 l2 = )()(
2 1222

−−− rqrz  …(67) 

For a multicomponent system, the UNIQUAC equation for the molar excess Gibbs energy is given 
by the sum of – 

 ∑∑
==

+=
m

i i

i
ii

m

i

i
i

E
ialcombinator xqz

xi
x

RT

g

1
*

1

*
)( ln

2
ln

φ
θφ

 …(68) 

and 

 ∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′′−=

m

i

m

i
jijii

E
residual q xq
RT
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Where segment fraction φ* and area fractions θ and θ' are given by – 
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and 

 τij = exp ⎟
⎠
⎞

⎜
⎝
⎛−

T
aij  and τji = exp ⎟

⎠
⎞

⎜
⎝
⎛−

T
a ji  

The coordination number z is set equal to 10. For any component i, the activity coefficient is given by - 
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Equation (70) requires only pure component and binary parameters6. 

(6) UNIFAC Equation 

UNIFAC provides a method for estimating activity coefficients in non electrolyte liquid mixtures. 
To use this method, no experimental data are required for the particular mixture of interest. In addition to the 
temperature and composition of the system, it is necessary only to know the molecular structure of every 
component in the mixture and the necessary group parameters. A large number of group-interaction 
parameters of different groups have been calculated. 

The UNIFAC model is developed as a combination of the UNIQUAC (Universal Quasi-Chemical) 
model and the solution of functional groups concept.  

The solution of functional groups concept is a flexible method with a large range of applicability. 
Instead of considering a liquid as a solution of molecules it is considered as a solution of groups where the 
groups are structural units or building blocks such as CH3, OH, CH. These building blocks form the 
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molecule. In the group contribution method it is assumed that a physical property of a fluid is the sum of the 
contributions made by the molecules' functional groups. So, the activity coefficients are determined by the 
properties of the groups rather than by the properties of the molecules. 

 ln γi = ln R
i

c
i γlnγ +  …(71) 

C = combinatorial and R = Residual 

I. Combinatorial Part: The combinatorial contribution is - 
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Where, 
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Pure-component parameters ri and qi are respectively measures of molecular van der Waals volumes 
and molecular surface areas. They are calculated as the sum of the group volume and group-area parameters, 
Rk and Qk (Bondi, 1968). 
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i

k QvqRv )()( ;  …(75) 

where ,)(i
kv always an integer, is the number of groups of type k in molecule i. Group parameters Rk 

and Qk are obtained from Van der Waals group volumes and surface area Vk and Ak, given by Bondi (1968). 

 Rk = Vk/15.17; Qk = Ak/(2.5*10^9) …(76) 

II. Residual part: 

The contribution from group interactions, the residual part, is assumed to be the sum of the 
individual contributions of each solute group in the solution less the sum of the individual contributions in 
the pure component environment. 
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All groups 

Γk is the group residual activity coefficient and )(i
kΓ  is the residual activity coefficient of group k in a 

reference solution containing only molecules of type i. 

The individual group contributions in any environment containing groups of kinds 1,2, ...N are 
assumed to be only a function of group contributions and temperature.  
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Xm is the fraction of group m in the mixture. 
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The group interaction parameter Ψmn is given in equation (81) where Umn is the interaction energy 
between the groups m and n. Parameter amn is the group interaction parameter for groups m and n. There are 
two parameters for each group-group interaction, amn and anm, where amn ≠ anm. The group interaction 
parameters are evaluated from experimental phase equilibria data.  

The equation for Γk can also be used for calculating )(i
kΓ except that the group composition variable 

θk is changed to be the group fraction of group k in pure fluid i7,8.  

Calculation of phase equilibrium from equation of state 

(1) Van der Waals Equation 

The Van der Waals equation of state, proposed in 1873 (Rowlinson, 1988), was the first equation 
capable of representing vapor-liquid coexistence. 

 Z = 
v RT
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 …(81) 

where, 
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227 2

=  

where Z is the compressibility factor Z = pV / RT; T is temperature, V is volume, p is the pressure, 
and R is the molar universal gas constant. The parameter a is a measure of the attractive forces between the 
molecules, and the parameter b is the volume occupied by the molecules. The and b parameters can be 
obtained from the critical properties of the fluid9. 

(2) Redlich Kwong Equation 

The most important model for the modification of the Van der Waals equation of state is the 
Redlich-Kwong equation (Redlich and Kwong, 1949). It retains the original van der Waals hard-sphere term 
with the addition of a temperature- dependent attractive term9,10. 

 Z = 
)(2/3 bvRT

a
bv

v
+

−
−

 …(82) 

where,  a = 0.42748 R2 5.2
crT / Pcr ;   b = 0.08664 RTcr / Pcr 

(3) Redlich Kwong Soave Equation 

The success of the Redlich-Kwong equation has been the impetus for many further empirical 
improvements Soave (1972). Suggested replacing the term a/a/T1.5 with a more general temperature-
dependent term a(T), that is – 
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 where, a(T) = 0.42748 )(
22

T
p
TR

cr

cr α  

 α(T) = ( )( )22 /1)176.0574.148.0(1 crTT  −−++ ωω  

 b = 0.08664 RTcr/pcr;    (ω = accentric factor) 

To test the accuracy of Soave-Redlich-Kwong (SRK) equation, the vapor pressures of a number of 
hydrocarbons and several binary systems were calculated and compared with experimental data (Soave, 
1972). In contrast to the original Redlich-Kwong equation, Soave’s modification fitted the experimental 
curve well and was able to predict the phase behavior of mixtures in the critical region9. 

(4) Peng Robinson Equation 

The Peng-Robinson (PR) equation of state slightly improves the prediction of liquid volumes and 
predicts a critical compressibility factor of Zc = 0.307. Peng and Robinson (1976) gave examples of the use 
of their equation for predicting the vapor pressure and volumetric behavior of single-component systems, 
and the phase behavior and volumetric behavior of the binary, ternary, and multicomponent system and 
concluded that Eq. (84) can be used to accurately predict the vapor pressures of pure substances and 
equilibrium ratios of mixtures. The Peng-Robinson equation performed as well as or better than the Soave-
Redlich-Kwong equation. Han et al. (1988) reported that the Peng-Robinson equation was superior for 
predicting vapor-liquid equilibrium in hydrogen and nitrogen containing mixtures. 
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where, a(T) = 0.45724 )(
22

T
p
TR

cr

cr α  

 α(T) = ( )( )22 /1)26992.054226.137464.0(1 crTT   −−++ ωω  

 b = 0.0778 RTcr/pcr;    (ω = accentric factor) 

The Peng-Robinson and Soave-Redlich-Kwong equations are used widely in industry. The 
advantages of these equations are that they can accurately and easily represent the relation among 
temperature, pressure, and phase compositions in binary and multicomponent systems. They only require the 
critical properties and acentric factor for the generalized parameters9. 

CONCLUSION 

In ideal system, activity coefficient is equal to one and Roult’s, Dalton laws are used. Activity 
coefficient models are applicable to systems that are nonideal in the liquid phase and equations of state are 
effective to describe both the vapour and liquid phase but at high pressure. Therefore, activity coefficient 
models and equation of states are useful for phase equilibria in non-ideal system. 
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