

USE OF GRANULAR ACTIVATED CARBON FOR THE TREATMENT OF SEA WATER

KAVITA KULKARNI^{*}, ANKUR DHIMAN and SATENDRA KUMAR^a

Department of Chemical Engineering, Bharati Vidyapeeth Deemed University, College of Engineering, PUNE – 411043 (M.S.) INDIA ^aQuality Control, Alkem Laboratories Limited, DAMAN AND DIU, INDIA

ABSTRACT

Activated carbon filtration (AC) is effective in reducing certain organic chemicals and chlorine in water. It can also reduce the quantity of lead in water although most lead-reducing systems use another filter medium in addition to carbon. Water is passed through granular or block carbon material to reduce toxic compounds as well as harmless taste and odor-producing chemicals. The study examined the use of granular activated carbon (GAC) pre-treatment for minimization of seawater contents and removal of organic micro pollutants. Batch experiments were carried out for different variables such as time and weight of adsorbent. Reduction in dissolved salts was about 60%.

Keywords: Granular activated carbon (GAC), Pollutants, Adsorbent.

INTRODUCTION

In many cases, removing or modifying hazardous things from seawater is not feasible. To treat seawater to make it potable is a very costly process, which involves the use of new emerged technologies and techniques like Forward Osmosis (FO). These technologies are only limited to developed countries like Australia, U.S.A, Dubai etc. In developing nations like India use of such processes is limited^{1,2}. Our experiment deals with the minimization and reduction in the amounts of the dissolved impurities in seawater by treating the seawater. The treatment involved use of Granular Activated Carbon (GAC), which showed a significant reduction in the amount of the dissolved impurities and salts. Among the technologies of desalination of seawater, reverse osmosis has been recognized to be the most cost-efficient technology in comparison to thermal processes^{3,4}. However, the desalination industry encounters a major challenge that consists in reverse osmosis membrane fouling, which implies a higher treatment cost due to the important frequency of

^{*}Author for correspondence; E-mail: kskulkarni@bvucoep.edu.in

membrane cleaning or/and replacement^{5,6}. Forward osmosis (FO) is one of the emerging membrane technologies, which has gained renewed interest recently as a low energy desalination process. The central to FO process is the draw solution (DS) and the membrane because both play a substantial role on its performance⁷. Likewise a study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material⁸⁻¹⁰. Seawater contain different types of contaminants such as heavy metals, micro pollutants, salinity and microorganisms, which need to be removed to make it suitable for potable uses. Reducing the volume of waste streams is an attractive option for minimizing the environmental impact and producing better quality product water¹¹⁻¹⁴.

EXPERIMENTAL

Experiments were carried out in batch mode. The seawater was obtained from the Jamphore Beach, Daman and Diu. The characteristics of the seawater are presented in Table 1. The seawater was stored and sampled in glass bottles until the tests were conducted.

 Table 1: Characteristics of sea water

Parameter	Value (mg/L)
Total dissolved solids	500
Magnesium	30
Total hardness	200
Sodium	200
Chlorine	250
Sulphate	200

The adsorbent used in the experiment was (GVC-Grade-1) Granular Activated Carbon that was from the Alkem Laboratories, Daman and Diu. The characteristics of GAC is given in Table 2.

Batch experiments

Optimization of GAC was done by taking 100 mL of sea water. From 1 g to 5 g adsorbent was taken in 100 mL sea water and kept in horizontal shaker for 2 hrs. The mixture was allowed to settle for specific time and then filtered. The filtrate was analyzed for the different parameters. Batch experiments were carried out by varying parameters such as weight of adsorbent and time.

2240

S. No.	Properties	Values
1	Grade	GVC-1
2	Iodine value	927 mg/g
3	Ash count	4%
4	Moisture	5%
5	Bulk density	0.45 g/cc
6	pH	10
7	Mesh size	8 X 16
8	Hardness	90%

Table 2: Characteristics of Granular activated carbon (GAC)

The pre-analysis treatment of seawater involved the valuation of the reduction in the amount of dissolved salts by treating it with GAC and then reducing the values of reduced slats by carrying out the chemical analysis based on the standard testing procedure.

RESULTS AND DISCUSSION

Analysis of the seawater was done by varying time from 30 minutes to 150 minutes. The chemical analysis was done according to standard procedure done and the results are tabulated below for TDS, Magnesium, Sulphate, Sodium and CaCO₃.

Parameter	Before treatment	After treatment				
(mg/L)		1 g	2 g	3 g	4 g	5 g
TDS	63.57262	30.514	29.243	27.971	27.336	27.123
Magnesium	776.462	395.99	388.282	357.172	349.407	357.175
CaCO ₃	3220.882	1707.06	1642.649	1513.819	1481.605	1546.023
Sodium	200	102	100	98	96	98
Sulphate	347	232.49	222.08	211.67	204.73	201.26

Table 3: Different parameters before and after treatment for 30 min

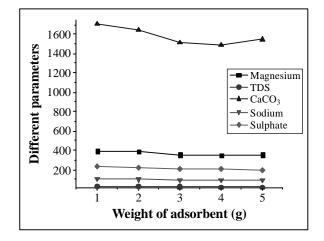


Fig. 1: Reduction of different parameters for 30 minutes

Table 4: Different parameters before and after treatment for 60 minutes

Parameter	Before treatment	After treatment				
(mg/L)		1 g	2 g	3 g	4 g	5 g
TDS	63.57262	29.243	28.6076	26.723	22.249	22.886
Magnesium	776.462	388.231	372.701	349.0479	295.055	310.58
CaCO ₃	3220.882	1674.85	1546.023	1513.81	1320.561	1288.352
Sodium	200	102	98	92	78	78
Sulphate	347	225.55	218.61	209	183.91	190.85

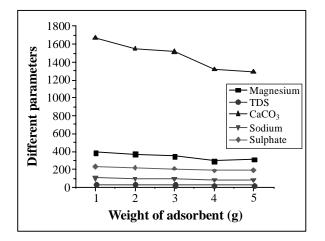


Fig. 2: Reduction of different parameters for 60 minutes

Parameter	Before	After treatment				
(mg/L)	treatment	1 g	2 g	3 g	4 g	5 g
TDS	63.57262	27.336	26.700	26.064	24.1575	25.429
Magnesium	776.462	372.701	372.462	333.87	318.34	326.114
CaCO ₃	3220.882	1513.814	1449.396	1417.188	1352.770	1384.97
Sodium	200	92	92	90	80	82
Sulphate	347	211.67	211.32	204.73	194.32	197.79

Table 5: Different parameters before and after treatment for 90 minutes

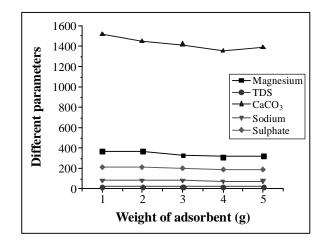


Fig. 3: Reduction of different parameters for 90 minutes

Table 6: Different parameters before and after treatment for 120 minutes

Dovomotov	Before	After treatment				
Parameter	treatment	1 g	2 g	3 g	4 g	5 g
TDS	63.57262	27.336	26.064	24.793	23.521	24.793
Magnesium	776.462	364.937	357.17252	326.114	302.82	318.349
CaCO ₃	3220.882	1481.605	1384.979	1385	1320.56	1352.770
Sodium	200	90	88	88	80	78
Sulphate	347	208.2	204.79	197.79	190.85	194.32

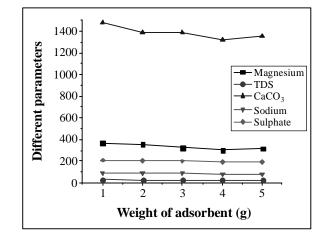


Fig. 4: Reduction of different parameters for 120 minutes

4 g of GAC gave the best removal efficiency in two hours. Further work will be carried out for different parameters, which can make the sea water for drinking purpose. Table 7 shows the best readings for removal of sea water content.

Component	Initial value	Final value
TDS	63.572	22.886
Magnesium	776.462	295.055
CaCO ₃	3220.882	1256.143
Sodium	200	78
Sulphate	347	187.38

Table 7: Maximum removal from 4 g in two hours

REFERENCES

- S. Adham, J. Oppenheimer, L. Liu and M. Kumar, Dewatering Reverse Osmosis Concentrate From Water Reuse Applications Using Forward Osmosis, WateReuse Foundation (2007) pp. 1-74.
- G. L. Amy, S. G. S. Rodriguez, M. D. Kennedy, J. C. Schippers, P. J. Remize, C. Barbe, C. L. O. Manes, N. J. West, P. Lebaron, D. van der Kooij, H. Veenendaal, G. Schaule, K. Petrowski, S. Huber, L. N. Sim, Y. Ye, V. Chen and A. G. Fane, Water Quality Assessment Tools, Membrane Based Desalination, An Integrated Approach (MEDINA), IWA Publishing Alliance House, London (2011).

- K. G. Babi, K. M. Koumenides, A. D. Nikolaou, C. A. Makri, F. K. Tzoumerkas and T. D. Lekkas, Pilot Study of the Removal of THMs, HAAs and DOC from Drinking Water by GAC Adsorption, Desalination, 210(1,3), 215-224 (2007).
- T. Y. Cath, M. Elimelech, J. R. McCutcheon, R. L. McGinnis, A. Achilli, D. Anastasio, A. R. Brady, A. E. Childress, I. V. Farr, N. T. Hancock, J. Lampi, L. D. Nghiem, M. Xie and N. Y. Yip, Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes, Desalination, 312, 31-38 (2013).
- 5. L. Chekli, S. Phuntsho, H. K. Shon, S. Vigneswaran, J. Kandasamy and A. Chanan, A Review of Draw Solutes in Forward Osmosis Process and Their Use in Modern Applications, Desalination, **43(1-3)**, 167-184 (2012).
- 6. E. E. Chang, Y. P. Lin and P. C. Chiang, Effects of Bromide on the Formation of THMs and HAAs, Chemosphere, **43**, 1029-1034 (2001).
- 7. T. Loftsson, D. Hreinsdóttir and M. Másson, Evaluation of Cyclodextrin Solubilization of Drugs, Int. J. Pharm., **302(1-2)**, 18-28 (2005).
- J. Löwenberg, A. Zenker, M. Baggenstos, G. Koch, C. Kazner and T. Wintgens, Comparison of Two PAC/UF Processes for the Removal of Micropollutants from Wastewater Treatment Plant Effluent: Process Performance and Removal Efficiency, Water Res., 56, 26-36 (2014).
- J. Margot, C. Kienle, A. Magnet, M. Weil, L. Rossi, L. F. de Alencastro, C. Abegglen, D. Thonney, N. Chèvre, M. Schärer and D. A. Barry, Treatment of Micro Pollutants in Municipal Wastewater: Ozone or Powdered Activated Carbon, Sci. Total Environ., 461-462, 480-498 (2013).
- L. N. Nguyen, F. I. Hai, J. Kang, W. E. Price and L. D. Nghiem, Removal of Trace Organic Contaminants by a Membrane Bioreactor–Granular Activated Carbon (MBR– GAC) System, Bioresource Technology, **113**, 169-173 (2012).
- L. N. Nguyen, F. I. Hai, J. Kang, W. E. Price, L. D. Nghiem, Coupling Granular Activated Carbon Adsorption with Membrane Bioreactor Treatment for Trace Organic Contaminant Removal: Breakthrough Behaviour of Persistent and Hydrophilic Compounds, J. Environ. Manag., **119**, 173-181 (2013).
- D. Serrano, S. Suárez, J. M. Lema and F. Omil, Removal of Persistent Pharmaceutical Micro Pollutants from Sewage by Addition of PAC in a Sequential Membrane Bioreactor, Water Res., 45(16), 5323-5333 (2011).

- M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas and A. M. Mayes, Science and Technology for Water Purification in the Coming Decades, Nature, 452, 7185, 301-310 (2008).
- 14. T. A. Thomas and A. Joss, Human Pharmaceuticals, Hormones and Fragrances- The Challenge of Micro Pollutants in Urban Water Management, Water Intelligence (2009).

Revised : 05.08.2016

Accepted : 07.08.2016

2246