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ABSTRACT

In this study, athree layer artificial neural network was used to predict the
simultaneous adsorption efficiency of phenol and cyanide on granular
activated carbon. The input layer consisted of 5, 15, 2 neurons in input
layer, hidden and output neurons respectively. Five operating variables
namely pH, contact time, adsorbent dosage, temperature and initial
concentration of phenol/cyanide was used as input to the constructed
neural network to predict the adsorption efficiency of phenol and cyanide.
A comparison between the experimental and predicted values by using
neural network showed high correlation coefficient of 0.984 and 0.988 for
phenol and cyanide respectively. Results indicated that contact timeisthe
most influential parameter on output variable (23.57%) followed by initial
concentration of phenol/cyanide (21.16%), adsorbent dosage (20.79%) and
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INTRODUCTION

Water pollution hasbeen amgor problem for over
decades. Dueto growing public concern, removal of
toxic pollutantslike phenol and cyanidesfromindustrid
wastewater has becomeamajor focusof research and
policy debate. Dueto poor degradability, high toxicity
and ecol ogical aspects, wastewater containing phenol
presents a serious discharge problem. Phenols are
present in wastewater generated from coke plant (620-
1150 mg/l), refineries (10-100 mg/l), petrochemicals
(50-600 mg/l), coal gasification (207-4900 mg/l) etc.
Industries associated with manufacture of pulp and pa-
per, metals, resins, plastics, rubber proofing, disinfec-
tant, paint and sted dso contributesignificantly towards
phenolsinwastewater™. Exposureto phenol can cause
gastrointestinal irritation, tissueerosion, protein degen-

eration, systemic effects such asrespiratory distress,
methaemogl obinaemia, neurological effect and findly
death?. Dueto itstoxicity, European Union has set
limitsfor phenol in potableand minerd water as0.5 ng/
|, wastewater emissionsas 0.5 mg/l and seweragesys-
temas1mg/l (law no. 152/2006).

Another toxic compound being released in envi-
ronment, inlarge concentrations, asaresult of indus-
trid activitiesiscyanide. Cyanidesaredischarged mainly
fromwastewatersof coke plant (100-1000 mg/l), gold
and silver extraction®# and plating industries (4000-
100000 mg/1)15¢., For the protection of environment,
many countriesand environmentd protection agencies
haveimposed limiting standardsfor the discharge of
wastewater containing cyanide to sewers. In India,
Centrd Pollution Control Board (CPCB) hasset amini-
mal nationd standard (MINAS) limit for cyanidein ef-
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fluent as0.2 mg/I™. The US Environmenta Protection
Agency (USEPA) has proposed alimit on total cya-
nide concentrationin drinking and aguatic-biotawaters
as 200 and 50 pg/1 respectively, where total cyanide
refersto freeand meta - complexed cyanides®. Expo-
sureto lower level sof cyanidemay result in breathing
difficulties, heart pains, vomiting, blood changes, head-
aches, and enlargement of thethyroid gland. Exposure
to highlevelsof cyanide harmsthebrainand heart and
may causecomaand ultimately death. Cyanide hasbeen
foundin at least 471 of the 1662 National Priorities
List sitesidentified by the Environmental Protection
Agency!.

Congdering theaboveregulationsit isnecessary to
treat wastewater contai ning phenol and cyanides. Con-
ventional methods of treatment of phenol containing
wastewatersindudedidtillation, liquid-liquid extraction,
adsorption, membraneextraction, ozonation, photocata-
Iytic oxidation, etc.l” Themethods employed for cya-
nideremoval are oxidation by hydrogen peroxide, oxi-
dation by ozone, photo oxidation, biological degrada-
tion, oxidation by Caro’s acid, oxidation by SO-,/air
(INCO process), electrochemical processes and ad-
sorption on activated carbon™. Of theabovereported
methods, activated carbon adsorption iseffectivefor
theremovd of severa compoundsand hasgained popu-
larity. Abatement of single componentsusing activated
carbon adsorption has been reported, however this
method isimpractical for largesca eagpplicationsowing
to high costs of activated carbon. Therefore, study of
smultaneousremova of morethan onecomponent is
essentid Snceindudtrid effl uents contain many compo-
nents.

A very limited literatureisavailable on the adsorp-
tionin multi-component systems, for e.g. adsorptionin
multi-component system of 2-methylphenol/2-
nitrophenol/2-chlorophenol™, phenal, p-chlorophenol
and p —nitrophenol™*?, p-cresol and p-nitrophenol ¥,
phenol and m-cresol*4, phenol and resorcinol*, phe-
nol and aniline, phenal and nitro-phenol™®.However ap-
plication of s multaneous adsorption of phenol and cya
nide has not been reported yet. For adsorption to be
put in practical use, it is necessary to model the ad-
sorption rate and to establish thetime dependency of
adsorption systemsunder various process conditions.
Selecting the optimum operating conditionsfor thead-
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sorption processrequirestheinformation about adsorp-
tionkinetics. Itisimportant to know the adsorption be-
havior under various operating variableslike pH re-
gimes, contact time, effluent concentration, tempera-
ture, etc.

Artificial neura network (ANN) could bean effec-
tivetool in solving the compl ex rel ationship between
multi-input variablesand outputs. ANNsarenon linear
mapping structureswhich actslikeahuman brain. It
canidentify and learn correl ated patternsbetween in-
put data sets and corresponding target values. It has
been successfully applied to predict the adsorption of
solid-liquid systemg'™ %9, Aghav et d. 2011?% hasused
ANN to predict the adsorption of phenol and resorci-
nol from water environment using some carbonaceous
adsorbents. A threelayersfeed forward neura network
with back propagation agorithmin MATLAB hasbeen
used for estimation of removal efficiencies of phenol
and resorcinol in bi-solutewater environment. Singh et
al. predicted the adsorption capacity of cadmium by
hematite using the adapted neura fuzzy model®. To
the best of our knowledge, no studies have been re-
ported so far on theuse of ANN for the prediction of
removd efficiency of phenol and cyanideusing granular
activated carbon. In the present study, athree layer
ANN mode wasused on the basisof batch adsorption
experimentsto determinesimultaneousremoval effi-
ciency of phenol and cyanide. Finally outputsobtained
from themodel s are compared with the experimenta-
tion data

EXPERIMENTAL

Granular Activated Carbon AR waswashed sev-
era timeswith distilled water to remove any attached
impurities. It wasthen soakedin 0.5M H_SO, inthe
ratioof 1.2 for 24 h. Thetrested GAC wasaganwashed
severa timeswith distilled water, dried inan oven at
110°C for 48 hand stored in air tight plastic contain-
ers. TABLE 1 showsthe characteristic of GAC used
for adsorption. BET surface areaand pore density of
GAC used was estimated using surface areaana yser
(modd micrometricschemisorb 2720).

Theadsorption of phenol and cyanideon GACwas
studied using batch experiments. Phenol stock solution
of concentration 1000 mg (Phenol)/l was prepared by
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dissolving 1 g of purephenol crystal in 11 of distilled
water. Similarly cyanide stock solution of concentra-
tion 1000 mg (Cyanide)/l was prepared by dissolving
1.89gof NaCN in 11 of distilled water. Theworking
solutions (50-350 mg/l) were prepared by diluting the
stock solutions. Optimization studieswere carried out
asdescribed here. Initid pH wasvariedfrom 3to 11to
know itseffect on adsorption. pH was maintained by
the addition of required amount of 0.1 M H_SO, and
0.1 M NaOH. The temperature was varied from 20
°C to 45 °C. The adsorbent dosage was varied from
10g/l to50 g/l. Theinitid concentration of phenol and
cyanidewasvaried from 50 mg/l to 350 mg/l. Thecon-
tact timewas studied by sampling at aninterval of 6 h
for 72 h. All batch experimentswere conducted in coni-
cal flaskswith 1.1 ratio of phenol and cyanideat shak-
ing speed of 120 rpm. The flasks were kept into an
incubator cum orbital shaker (Metrex Scientific Instru-
ments, New Delhi) for 24-72 h. The concentration of
phenol and cyanideremaining in thessmulated waste-
water after the attainment of equilibriumwas measured
us ng col orimetric 4-aminoanti pyrenemethod and colo-
rimetric picric acid method respectively by measuring
the absorbance at 510 nm and 520 nm respectively on
aUV-VIS spectrophotometer, Hach® USA according
to American standards?.

TABLE 1: Characteristicsof GAC

Characteristics Value
Particle sze 4-5mm
BET surface area 228.6375 m?/g
Pore volume 0.1151 m¥g
Bulk density 0.4 g/ml

Theremoval efficiency of adsorption was calcu-
lated asfollows:
100(C. = C)
R, % =——"i e
en L (1] (1)
where C and C_aretheinitia concentration and equi-
librium concentration inthe solution respectively.

Modeling appr oach

ANN has been devel oped as generdlizations of
mathematical model sof biologica nervoussystem. The
basic el ementsof aneural network are neuronsinter-
connected to each other. A neural network hasto be
configured to producethe desired set of output onthe
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application of aset of input. Thetraining of aneural
network isperformed by feeding teaching patternstoit
and letting it changeitswe ghtsaccordingto somelearn-
ing rule. Theneuronsrece veimpul sesfrom ether input
cellsor other neuronsand perform somekind of trans-
formation of theinput and transmit the outcometo other
neurons or to output cells. Thelayersof neuronsare
interconnected so that onelayer recaivesinput fromthe
preceding layer of neuronsand passesthe output onto
thenext layer. AnANN architecture consist of number
of hidden layers, hidden nodes, input nodes, output
nodes, etc. (figure 1). Thedataisgivento neural net-
work intheinput layer whereasthe output layer pro-
videstheoutput for given set of input datafor atrained
network. The complicated rel ation between input layer
and output layer issolved by hidden layers.

Generdly aneurd network withonehiddenlayer is
aufficient for goproximating any continuousfunction. The
number of neuronsin thehidden layer isdetermined by
trial and error method starting fromminimum and in-
creasingit. Many researchers have used back propa-
gationtraining agorithmfor modeling of variousprob-
lemswhich usessupervised training. Eachinput ismul-
tiplied by itsweight and then added and processed us-
inganectivationfunction. Sgmoid functionismaost com-
monly used transfer function. Thetrainingsamplesare
fed asinput vectorsthrough aneural network, calculat-
ing the error of the output layer and then adjusting the
welghts of thenetwork to minimizetheerror. The per-
formance of trained network ismeasured by statistical
parameterslike coefficient of determination (R?), mean
squareerror (MSE), etc. A model should haveits R?
vaueascloseaspossbleto 1 anditsM SE vadueshould
beminimd.

Inthiswork MATLAB 7.6.0 (R20083a) isused to
predict S multaneous adsorption efficiency of phenol and
cyanideon GAC. A three-layer ANN, aninput layer
with 5 neurons(initial pH, contact time, temperature,
adsorbent dosage and initial concentration of phenol
and/or cyanide), ahiddenlayer and an output layer with
2 neurons (removd efficiency of phenol and cyanide)
was used to predict theremoval efficiency of phenol
and cyanide. Thetraining of network wasdoneusing
Levenberg-Marquardt back propagation method. The
number of neuronswasvaried from 1-20. TABLE 2
showsthearchitecture of ANN used for modeling.
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Input parameters ANN Network Estimated parameters

Figurel: Sructureof artificial neural network

TABLE 2: Detailsof trained artificial neural network for
thesmultaneousremoval of phenol and cyanideon granular
activated carbon

Type Value/ Comment
Input layer 5
Hidden Layer 1-20
Output layer 2
Type of algorithm Levenberg-Marquardt
Backpropagation method
Number of data used
. 49
for training
Number of data used 17
for validation
Number of data used 17
for testing

RESULTSAND DISCUSSION

Data preprocessing

Toimprovethelearning and training processof neu-
ra network, it isnecessary to normalizetheinput and
output dataus ng equation (2) and equation (3) respec-
tively.

+(L _me)*M

z = L min
(X —X

min

) @)
whereY isthenormdizedvaueof X, X. istheinput or

output of thenetwork, L . andL __ definethelimit of
therangewherewewanttoscaleX and X _ and X .
arethemaximum and minimumvauesof X . Theinput
and output data was normalized between 0.2 - 0.8.
The outputswere converted back to origind State after
modeling using equation 3.

X =X, L) sy oy 3

Il]ill max nmun
(L. — )
nmin max

whereY  isthe normalized value of X, X. isthe pre-
dicted valueof an output of thenetwork, L . andL
definethelimit of therangeof X and X __ and X . are
themaximum and minimumvauesof X. inthetraining
dataset.

Datadivision

In this study, atotal of 84 experiment sets were
used to train and test the performance of ANN for
modeling of smultaneousadsorption of phenol and cya
nideon GAC. Out of 84 experiment sets, 49 were se-
lected for training, 17 for vaidation and rest for testing
of the network. The experiment setswere selected for
training, validationand testing on random basis. Aghav
etal., 201129 ysed 15 datasetsfor trainingand 7 each
for validation and testing. Shetty et d ., 2008 used 24
datasetsfor training, 4 datasetsfor validation and 3
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data sets for testing. The training was done using
Levenberg-Marquardt backpropagation algorithm.
Number of neuronsin the hidden layer isanimportant
factor of neural network. Lack of sufficient neuron
causes under fitting of the network whereastoo many
neurons might lead to over fitting. Thisover-fitting oc-
curswhen the neural network adapt to aspecific noisy

1
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training data. It occurs when the difference between
training error and test error riseswithincreasein the
number of hidden neurons. In thisstudy the number of
neurons in hidden layer was varied from 1-20. The
optimum number of hidden neuronswasfound to be
15 becausetraining error and testing error start to di-
verge after 15 asseen fromfigure 2.
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Figure2: Variation of training, testing and validation regression with increasing neuronsin the hidden layer

Simulation result of ANN modédl

The training of data automatically stops when
generalization stopsimproving asindicated by anin-
creaseinthemean squareerror of thevalidation samples.
TheMean Squared Error (M SE) istheaveragesquared
difference between outputs and targets. It should be as
low aspossible. A M SE of zero meansno error. The
regression (R?) val uemeasuresthe correl ation between
outputsand targets. An R? vaue of onereferstoaclose
relationship whereas zero arandomrel ationship. The
ANN model used here has sum of squareerror (SSE)
of 2.210744, mean square error (M SE) of 4.887388,
average relative error (ARE) of 2.540766 and Chi-
square statistic as 8.001271 for phenol and SSE of
2.297312, MSE of 5.27764, ARE of 3.135181 and
Chi square statistic as 26.83004 for cyanide. It shows

1

that ANN modeling performanceisgoodto predict the
removal efficiency of phenol and cyanide by adsorp-
tionusing GAC. Theregressonvauefor training data
1s0.99867, validation datais 0.98663 and testing data
150.9886. A compari son between theexperimenta and
predicted valuesusing ANN isshowninfigure3and4
for phenol and cyanide respectively. The correlation
coefficient (R?) is0.984 and 0.988 for phenol and cya
niderespectively. Thisisin close agreement with the
findings of previous studies'”-2+24, |t wasfound that
ANN can predict the removal efficiency of cyanide
better than phenol sincethe corrdation coefficient for
cyanideisgreater than that of phenol. The percentage
error between predicted and experimenta vauesismore
than 10% for percentageremoval efficiency lessthan
35%. Therefore experiment setspertaining to removal
efficiency greater than 35% were sel ected.
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Figure3: Comparison of experimental removal efficiency with removal efficiency predicted by ANN for phenol
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Figure4: Comparison of experimental removal efficiency with removal efficiency predicted by ANN for cyanide
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Figure5: Experimental removal efficiency and ANN removal efficiency of phenol for different initial concentration of
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Figure6: Experimental removal efficiency and ANN removal efficiency of cyanidefor different initial concentration of

phenol/cyanide

Figure5and 6 showsthe percentageremovd effi-
ciency of phenol and cyanidefor different initial con-
centration of phenol/cyanide. The neural net weight
matrix wasused to find therd aiveimportance of input
variables on the output variables. The equation used
was based on the partitioning of connection weights?.
It wasfound that contact time hasthe maximum effect
ontheremoval efficiency (23.57%) followed by initial

CHEMICAL TECHNOLOGY

concentration (21.16%), adsorbent dosage (20.79%)
and pH (19.44%). Therd ativeimportance of tempera-
tureonremova efficiency was 15.04%.

Aleboyenh et d., 200828 found initial concentration
of H,O,to bethemost influential parameter inthe de-
colorization processfollowed by contact time. Theini-
tial concentration appeared to bethe most influential
parameter in the biosorption processfollowed by pH,
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temperatureand timefor Acid Black 172 metal-com-
plex dyewhereasfor Congo Red, temperaturewas most
influential andinitid concentration wasleast influentid.
TABLE 3 showsthecomparison of resultsof the present

—= Full Paper

study with that from theliterature. The values of pa-
rameters obtained from pseudo second order kinetic
modeling were used to predict theamount of phenol
and cyanide adsorbed on GAC.

TABLE 3: Comparison of effect of variousinput variableson output variablesof thisstudy with other studies

Thisstudy Khataeeet al., 20101

Yang et al., 2011%
Acid Black 172 Congo Red

Aleboyeh et al., 2008

Time 23.57 40.33
pH 19.44 16.00
Temperature 15.04 20.55
Adsorbent dosage 20.79 10.78*
Initial concentration  21.16° 12.349

21.00 15.95 24.30
11.61 23.45 29.83
- 19.17 36.76
48.89° - -
18.50° 41.43 9.11

2 Initial concentration of phenol/cyanide; ° Initial concentration of H,O, °Amount of algae;“Initial concentration of dye

TABLE 4 showsthe compari son of amount of phe-
nol and cyanide adsorbed on GAC with thosepredicted
by ANN and pseudo 2™ order. Both the model had
wdll fitting to experimenta data. However inthe case
of amount of phenol adsorbed onthe GAC, ANN was
found to be more accurate than pseudo second order
modeling. Inthe case of cyanide, ANN wasfound to
have same accuracy as pseudo second order model -
ing. Thisisin agreement with previous studieg%% 2l
that ANN had well fitting resultsto describe the experi-
mentd data.

TABLE 4: Comparison of amount of phenol and cyanide
adsor bed on GAC with thosepredicted by ANN and pseudo 2
order GAC at pH=8, Contact time=72 h, Temper ature=35
°C, Adsorbent dosage =30 g/l

Phenol Cyanide
Opredict Opredict
C q Opresicc (Pseudo Opredicc  (PSeudo
(mg/l) ®" (ANN) 2™ > (ANN) 2™
Order) Order)
50 138 1.38 141 155 154 157
100 254 248 260 269 252 2.74
200 476 4.69 491 494 471 4.36
300 6.01 6.03 6.23 582 540 6.04
CONCLUSION

In this paper, prediction of removal efficiency of
phenol and cyanide using granular activated carbon by
atificid neura network wasstudied. A threelayer neu-
ral network with 5 neuronsininput layer, 15 neuronsin
hidden layer and 2 neuronsin output layer was used.

The ANN model has sum of square error (SSE) of
2.210744, mean sguare error (MSE) of 4.887388,
average relative error (ARE) of 2.540766 and Chi-
square statistic as 8.001271 for phenol. The ANN
model has SSE of 2.297312, ARE of 3.135181, MSE
of 5.27764 and Chi square statistic as 26.83004 for
cyanide. It wasfound that prediction of removal effi-
ciency was better for cyanide than phenol. The
perentage error of removal efficiency of phenol and
cyanide predicted by ANN with experimentd vaueless
than 35% was morethan 10%. All theinput variables
had important effect on the output variables. Contact
time was found to be most influential parameter
(23.57%) followed by initia concentration of phenol/
cyanide (21.16%), adsorbent dosage (20.79%) and
pH (19.44%). The comparison of experimenta amount
of phenol and cyanide adsorption on GAC wasfound
to be better predicted by ANN than pseudo second
order moddling in case of phenol whereasin cyanideit
was found to have same prediction as of pseudo sec-
ond order modeling.

ACKNOWLEDGEMENT
Thisstudy was supported by aresearch grant from
theMinistry of Human Resourceand Devel opment, In-
dia
NOMENCLATURE

C - equilibrium concentrationin the solution,

mg
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C, - initia concentrationinthesolution, mg/l
vin L - limit of therangeof X,

MSE : mean square error

R? - coefficient of determination

R, : Removd Efficiency, %

X, - input or output of the network

X e X iy - Maximumand minimumvauesof X,

Y. : normalized vaueof X,
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