Use fuzzy mathematical method to study the evaluation of compost maturity index

Chen Yong*, Wen Xiaoli, Liu Shuaixia

Henan Institute of Engineering
No.1 Zhongshan North Road, Longhu Xinzheng, Zhengzhou, Henan Province, 451191, (P.R.CHINA)
E-mail: chenjiate@126.com

ABSTRACT

Aiming at the composting process there is no uniform maturity judgment basis now, proposed to use fuzzy mathematics method to establish a maturity of compost process evaluation for comprehensive evaluation system, the system can reflect the actual compost maturity situation.

© 2013 Trade Science Inc. - INDIA

KEYWORDS

Aerobic composting; Maturity; Comprehensive evaluation index.

EVALUATION OF COMPOST MATURITY INDEX CURRENT SITUATION

Sludge composting process is divided into aerobic fermentation and anaerobic fermentation of two kinds of process. Anaerobic fermentation methane, hydrogen sulfide, carbon dioxide produced by other metabolites can cause odor. Due to the slow decomposition of organic matter, the fermentation cycle for 4 ~ 6 months, the area is too big. The other mosquito breeding, sewage flows, have two pollution is serious, not suitable for large-scale industrial sludge disposal. Modern process is aerobic composting, it has a high rate of decomposition of organic matter, the composting cycle short, smellless. But the residence time of traditional aerobic composting long generally 10 - 15 days, area is too large, artificial turning labor bulky problem. Factory machinery compost is the mainstream of composting technology development, development of efficient composting machinery also is an urgent requirement.

Aerobic composting technology of mechanization is in controlled condition, biodegradation of perishable organic matter in sewage sludge by aerobic microorganisms, make whole process has good stability of the humic particles. At present, the sludge aerobic fermentation composting technology is the research and development at home and abroad are used in feeding, stirring, ventilation, efficient fermentation device of material at the same time, its core is the aerobic fermentation tank. According to the shape of the fermentation tank can be divided into several categories: vertical multistage fermentation tank; silo type fermentation tank; horizontal rotation fermentation tank; the horizontal open fermentation tank.

In recent years, domestic and foreign scholars of different composting materials, composting sludge compost maturity in physical, chemical and biological indicators studied. Researchers agree that, in different mate-
rials, different composting of the composting process, reflecting the compost maturity physical, chemical and biological indicators showing a complex changes, only using a single index can only reflect from a compost maturity degree, and can not fully reflect the actual situation of the composting process of composting. Therefore, using multiple indicators from different angles (such as harmless, reduction aspects) reflects the compost maturity, in recent years has become a research focus. By mathematical methods of these indicators of compost maturity comprehensive consideration, will make the evaluation more comprehensive, scientific and maneuverability. Grey clustering method, gray correlation analysis method, fuzzy mathematics method and mathematical method in evaluation of compost maturity application have been reported, some scholars using fuzzy comprehensive evaluation method for garbage, pig manure compost maturity respectively were evaluated in this study, but they choose evaluation system is not the same, there is no unified evaluation index degree of maturity of compost using\cite{11}. This article through the analysis of a single index on composting conditions, by using basic theory of fuzzy mathematics, comprehensive and single index influence the results, obtained comprehensive evaluation index for analysis of overall situation of compost maturity.

FUZZY MATHEMATICS COMPREHENSIVE EVALUATION INDEXES

Selection of commonly used compost maturity evaluation index: Accumulated temperature0Oxygen consumption rate Change rate of C/N NH$_3$-N/NO$_3$-N Seed germination index (GI), Use fuzzy mathematical method to different material compost maturity degree of objective, reasonable evaluation, so as to obtain the sludge, garbage compost maturity universal evaluation methods.

Selected five on compost maturity influence index as the factor set, That is $U = \{u_1, u_2, u_3, u_4, u_5\}$, u_1 for C/N than the rate of change, u_2 for NH$_3$-N/NO$_3$-N than the rate of change, u_3 for Oxygen consumption rate $\left(\text{g}O_2/(\text{kg} \cdot \text{h})\right)$, u_4 for Accumulated temperature $\left(\text{°C} \cdot \text{h}\right)$, u_5 for Seed germination index (GI)\cite{2}. According to the evaluation set, $V = \{V_1, V_2, V_3, V_4\}$, Here, V_1 full maturity, V_2 maturity, V_3 basic maturity, V_4 not maturity. The compost maturity evaluation criteria classification is shown in TABLE 1.

On the composting operation of the large amount of measured data after the technical treatment, the data in TABLE 2.

According to the above TABLE establishing single factor evaluation matrix R, such as factor u_4, a total of 36 statistics it belongs to V_1 for the number 8, accounting for 22% of the total, so, other similar seek.

$$R = \begin{pmatrix} 0.06 & 0.63 & 0.28 & 0.03 \\ 0.31 & 0.50 & 0.14 & 0.06 \\ 0.08 & 0.50 & 0.36 & 0.06 \\ 0.22 & 0.28 & 0.44 & 0.06 \\ 0.36 & 0.33 & 0.17 & 0.14 \end{pmatrix}$$

This is according to the previous data to establish the evaluation matrix, on compost maturity evaluation, but also calculate weight distribution , the various factors on the membership, membership function with the

<table>
<thead>
<tr>
<th>Index type</th>
<th>I (full maturity)</th>
<th>II (maturity)</th>
<th>III (basic maturity)</th>
<th>IV (not maturity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_{CN} (%)</td>
<td>≥ 60</td>
<td>$< 60, \geq 30$</td>
<td>$< 30, \geq 12$</td>
<td>$< 12, \geq 0$</td>
</tr>
<tr>
<td>NH$_3$-N/NO$_3$-N</td>
<td>≤ 0.5</td>
<td>$> 0.5, \leq 0.91$</td>
<td>$> 0.91, \leq 3$</td>
<td>> 3</td>
</tr>
<tr>
<td>Oxygen $\left(\text{g}O_2/(\text{kg} \cdot \text{h})\right)$</td>
<td>≤ 0.5</td>
<td>$> 0.5, \leq 1.0$</td>
<td>$> 1.0, \leq 1.5$</td>
<td>> 1.5</td>
</tr>
<tr>
<td>Accumulated temperature $\left(\text{°C} \cdot \text{h}\right)$</td>
<td>≥ 13000</td>
<td>$\geq 11000, < 13000$</td>
<td>$\geq 9000, < 11000$</td>
<td>< 9000</td>
</tr>
<tr>
<td>GI (%)</td>
<td>≥ 80</td>
<td>$< 80, \geq 60$</td>
<td>$< 60, \geq 50$</td>
<td>< 50</td>
</tr>
</tbody>
</table>
following formula.

(1) on membership function

\[
\mu_1(u_1) = \begin{cases}
1, & u_1 \geq 60 \\
\frac{2}{9}(u_1 - 60)^2, & 30 \leq u_1 < 60 \\
\frac{2}{9}(u_1 - 12)^2, & 12 \leq u_1 < 30 \\
0, & u_1 < 12
\end{cases}
\]

(2) on membership function

\[
\mu_2(u_2) = \begin{cases}
1, & u_2 \leq 0.5 \\
1 - \frac{2}{3}(u_2 - 0.5)^2, & 0.5 < u_2 \leq 0.91 \\
\frac{2}{13}(u_2 - 0.91)^2, & 0.91 < u_2 \leq 3 \\
0, & u_2 > 3
\end{cases}
\]

(3) on membership function

\[
\mu_3(u_3) = \begin{cases}
1, & u_3 \leq 0.5 \\
1 - \frac{2}{3}(u_3 - 0.5)^2, & 0.5 < u_3 \leq 1.0 \\
\frac{2}{13}(u_3 - 1.0)^2, & 1.0 \leq u_3 \leq 1.5 \\
0, & u_3 > 1.5
\end{cases}
\]

(4) on membership function

\[
\mu_4(u_4) = \begin{cases}
1, & u_4 \geq 13000 \\
1 - \frac{2}{3}(u_4 - 13000)^2, & 11000 \leq u_4 < 13000 \\
\frac{2}{3000}(u_4 - 11000)^2, & 9000 \leq u_4 < 11000 \\
0, & u_4 < 9000
\end{cases}
\]

(5) on membership function

\[
\mu_5(u_5) = \begin{cases}
1, & u_5 \geq 80 \\
1 - \frac{2}{3}(u_5 - 80)^2, & 60 \leq u_5 < 80 \\
\frac{2}{3}(u_5 - 60)^2, & 50 \leq u_5 < 60 \\
0, & u_5 < 50
\end{cases}
\]

Then the weight distribution is determined as

\[
A = (\mu_1(u_1), \mu_2(u_2), \mu_3(u_3), \mu_4(u_4), \mu_5(u_5)).
\]

According to: \(B = A \cdot R\), Current maturity degree can be obtained by the comprehensive evaluation index.

For example the first composting process, various factors of average data: \(u_1=53.9, u_2=0.4, u_3=1200, u_4=84\), They were brought into the top five membership function formula. Can be obtained \(A=(0.1, 1, 0.78, 1)\). To calculate \(B = A \cdot R = (0.92, 1.55, 1.01, 0.31)\), Normalized after \(B=(0.43, 0.34, 0.11, 0.09)\). According to the maximum membership principle, the conclusion is “maturity“.

If the second times to get the comprehensive evaluation for \(B=(0.33, 0.26, 0.13, 0.09)\), Although it is named “maturity“, but compared with the first, “maturity“ degree lower than the last, and thus can be considered the first compost than second good.

CONCLUSION

To sum up, through the fuzzy mathematical method

TABLE 2: The composting process parameters measured data list

<table>
<thead>
<tr>
<th>(u_1)</th>
<th>(u_2)</th>
<th>(u_3)</th>
<th>(u_4)</th>
<th>(u_5)</th>
<th>(u_6)</th>
<th>(u_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.6</td>
<td>0.4</td>
<td>0.9</td>
<td>13200</td>
<td>90</td>
<td>33.9</td>
<td>0.8</td>
</tr>
<tr>
<td>41.1</td>
<td>0.5</td>
<td>0.5</td>
<td>10002</td>
<td>97</td>
<td>37.7</td>
<td>0.5</td>
</tr>
<tr>
<td>12.0</td>
<td>0.6</td>
<td>1.0</td>
<td>11003</td>
<td>83</td>
<td>44.8</td>
<td>0.9</td>
</tr>
<tr>
<td>12.4</td>
<td>0.3</td>
<td>0.8</td>
<td>12005</td>
<td>80</td>
<td>43.0</td>
<td>0.2</td>
</tr>
<tr>
<td>12.0</td>
<td>0.9</td>
<td>1.4</td>
<td>13700</td>
<td>74</td>
<td>53.4</td>
<td>0.8</td>
</tr>
<tr>
<td>13.0</td>
<td>0.4</td>
<td>1.2</td>
<td>12300</td>
<td>73</td>
<td>47.3</td>
<td>0.7</td>
</tr>
<tr>
<td>25.9</td>
<td>0.4</td>
<td>1.3</td>
<td>15300</td>
<td>79</td>
<td>38.4</td>
<td>0.9</td>
</tr>
<tr>
<td>13.9</td>
<td>0.8</td>
<td>0.7</td>
<td>11000</td>
<td>84</td>
<td>47.1</td>
<td>1.1</td>
</tr>
<tr>
<td>24.1</td>
<td>0.6</td>
<td>1.2</td>
<td>12000</td>
<td>75</td>
<td>60.7</td>
<td>1.6</td>
</tr>
<tr>
<td>52.3</td>
<td>0.8</td>
<td>0.5</td>
<td>10400</td>
<td>89</td>
<td>47.6</td>
<td>0.6</td>
</tr>
<tr>
<td>53.4</td>
<td>0.9</td>
<td>1.8</td>
<td>9850</td>
<td>79</td>
<td>39.0</td>
<td>1.1</td>
</tr>
<tr>
<td>55.3</td>
<td>0.4</td>
<td>1.3</td>
<td>9960</td>
<td>68</td>
<td>53.5</td>
<td>1.7</td>
</tr>
<tr>
<td>60.4</td>
<td>0.6</td>
<td>1.6</td>
<td>9860</td>
<td>67</td>
<td>13.9</td>
<td>0.8</td>
</tr>
<tr>
<td>30.8</td>
<td>0.5</td>
<td>1.4</td>
<td>9780</td>
<td>82</td>
<td>48.6</td>
<td>1.8</td>
</tr>
<tr>
<td>22.7</td>
<td>0.8</td>
<td>2.5</td>
<td>9880</td>
<td>71</td>
<td>38.9</td>
<td>1.2</td>
</tr>
<tr>
<td>46.6</td>
<td>0.6</td>
<td>1.4</td>
<td>10050</td>
<td>87</td>
<td>45.1</td>
<td>0.8</td>
</tr>
<tr>
<td>34.5</td>
<td>0.7</td>
<td>0.8</td>
<td>13500</td>
<td>88</td>
<td>27.8</td>
<td>1.2</td>
</tr>
<tr>
<td>33.9</td>
<td>0.5</td>
<td>0.8</td>
<td>14300</td>
<td>51</td>
<td>27.4</td>
<td>1.2</td>
</tr>
</tbody>
</table>
to establish the mathematical model of comprehensive maturity evaluation of single index can get a comprehensive index for evaluation of an aerobic compost maturity situation. Be able to better reaction compost actual maturity effects, follow-up study of compost and influence factors of composting process provides a great convenience.

REFERENCES

