ISSN : 0974 - 7435

Volume 10 Issue 6

• FULL PAPER BTALJ, 10(6), 2014 [1556-1561]

University student cyber psychological fuzzy comprehensive evaluation

Yong Liu^{1*}, Shanshan Li²

¹Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, (CHINA) ²Shandong Sport University, Jinan 250102, Shandong, (CHINA)

Abstract

The paper carries out university student cyber psychological status analysis, it gets present university student psychology of viewing cyber things, university student attitude of commenting on one incident, conformity attitude and emotionality occupy larger proportions, which are about the same as student rational reflecting problems' proportions by comparing. The paper by analyzing modern university student cyber psychological health, it applies fuzzy comprehensive evaluation model to analyze. It gets fuzzy comprehensive evaluation value, $Z=U \cdot B=(0.31 \ 0.29 \ 0.23 \ 0.17)$, due to 0.31>0.29>0.23>0.17, it shows its located indicators range is within the score interval among 0-60. Therefore, it can show that contemporary students' cyber psychological health evaluation index is lower; this should be taken more seriously. © 2014 Trade Science Inc. - INDIA

KEYWORDS

Psychological health; Fuzzy evaluation; Cyber psychology; Student psychology.

INTRODUCTION

Network technique rapid development drives students' life high speed convenience and development, and meanwhile it seriously affects university student psychological health, network is a double-edged sword, on one hand, it brings into good development way and opportunities for education, sets up new prospects, and provides high effective network learning platform, however, on the other hand, it causes serious threaten to students psychological health, therefore cyber psychological health is particular important for university student development.

Cyber psychological health and actual psychological health have great differences, especially in education environment virtualization, so to cyber psychological education and improvements, it has severe tests.

The paper gets each kind of network application utilization rate (partial) from 2010 to 2011, by data indication; it gets status analysis as TABLE 1 shows.

By Figure 1 it is clear that university student attitude of commenting on one incident, conformity attitude and emotionality occupy larger proportions, which are about the same as student rational reflecting problems' proportions by comparing.

MODEL ESTABLISHMENTS

Fuzzy comprehensive evaluation model

(1) Utilize fuzzy comprehensive evaluation, steps are as following:

Establish factor set U,

1557

	Year	2011	Year		
Application	User scale (ten thousand)	Utilization rate	User scale (ten thousand)	Utilization rate	Annual growth rate
Instant messaging	41510	80.9%	35258	77.1%	17.7%
Search engine	40740	79.4%	37453	81.9%	8.8%
Network music	38585	75.2%	36218	79.2%	6.5%
Netnews	36687	71.5%	35304	77.2%	3.9%
Online video	32531	63.4%	28398	62.1%	14.6%
Online game	32428	63.2%	30410	66.5%	6.6%
Blogs/personal space	31864	62.1%	29450	64.4%	8.2%
Microblog	24988	48.7%	6311	13.8%	296.0%
E-mail	24577	47.9%	24969	54.6%	-1.6%
Social network site	24424	47.6%	23505	51.4%	3.9%
Forum/BBS	14469	28.2%	14817	32.4%	-2.3%
Traveling reservation	4207	8.2%	3613	7.9%	16.5%

$$\boldsymbol{U} = \begin{pmatrix} \boldsymbol{U}_1 & \boldsymbol{U}_2 & \cdots & \boldsymbol{U}_k \end{pmatrix}$$

- (2) Establish judgment set V (evaluation set),
- (3) Establish judgment matrix fuzzy mapping from U to V, it gets fuzzy relation as following matrix shows:

$$R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & & \vdots \\ r_{m1} & r_{m2} & \cdots & r_{mn} \end{bmatrix}$$

(4) Establish weight set, $A = (a_1, a_2, \dots, a_n)$, it meets

conditions:

$$\sum_{i=1}^n a_i = 1 \quad a_i \ge 0$$

(5) Fuzzy relation R every line reflects the line influence factors to object judgment extent, and mean-

while, R every column reflects the column influence factors to object judgment extent.

$$\sum_{i=1}^{n} r_{ij} \qquad j = 1, 2, 3, \cdots, m$$

FULL PAPER
$$B = A \cdot R$$

$$= (a_1, a_2, a_3, \dots, a_n) \cdot \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ r_{21} & r_{22} & \dots & r_{2n} \\ \vdots & \vdots & & \vdots \\ r_{m1} & r_{m2} & \dots & r_{mn} \end{bmatrix}$$
$$= (b_1, b_2, b_3, \dots, b_n)$$

In V, fuzzy combination is evaluation set B. Based on above described facts, actual change model is:

As Figure 2 show, it gets fuzzy comprehensive evaluation change model, and can establish corresponding every factor grade evaluation transformation function, evaluation factors u1, u2, u3, u4, u5 membership functions can be expressed as following:

$$u_{v1}(u_{1}) = \begin{cases} 0.5(1 + \frac{u_{i} - k_{1}}{u_{i} - k_{2}}), & u_{i} \ge k_{1} \\ 0.5(1 - \frac{k_{1} - u_{i}}{k_{1} - k_{2}}), & k_{2} \le u_{i} < k_{1} \\ 0 & , & u_{i} < k_{2} \end{cases}$$
$$u_{v2}(u_{1}) = \begin{cases} 0.5(1 - \frac{u_{i} - k_{1}}{u_{i} - k_{2}}), & u_{i} \ge k_{1} \\ 0.5(1 + \frac{k_{1} - u_{i}}{k_{1} - k_{2}}), & k_{2} \le u_{i} < k_{1} \\ 0.5(1 - \frac{u_{i} - k_{3}}{k_{2} - k_{3}}), & k_{3} \le u_{i} < k_{2} \\ 0.5(1 - \frac{k_{3} - u_{i}}{k_{2} - u_{i}}), & u_{i} < k_{3} \end{cases}$$
$$u_{v1}(u_{1}) = \begin{cases} 0, & u_{i} \ge k_{2} \\ 0.5(1 - \frac{k_{1} - u_{i}}{k_{2} - u_{i}}), & u_{i} < k_{3} \end{cases}$$
$$u_{v1}(u_{1}) = \begin{cases} 0, & u_{i} \ge k_{2} \\ 0.5(1 - \frac{k_{1} - u_{i}}{k_{2} - u_{i}}), & u_{i} < k_{3} \end{cases}$$

Combine with fuzzy evaluation model to evaluate university cyber psychology

According to TABLE 2 data, establish factor set U, $U = \begin{pmatrix} U_1 & U_2 & U_3 & U_4 \end{pmatrix}$ Ofrom which network communication tool U_1 , online time distribution U_2 , university cyber psychology attention U_3 , university cyber

psychology education U_4 , it gets TABLE 3.

By TABLE 3 listed factors, it gets evaluation sets.

$$U_{1} = \{u_{11}, u_{12}, u_{13}, u_{14}\}$$
$$U_{2} = \{u_{21}, u_{22}, u_{23}, u_{24}, u_{25}\}$$
$$U_{3} = \{u_{31}, u_{32}, u_{33}\}$$
$$U_{4} = \{u_{41}, u_{42}, u_{43}, u_{44}\}$$

By collecting data and analyzing, it gets four kinds of factors importance degrees ranking statistics, as TABLE 4 shows.

By sorting TABLE 2, it gets network communication tool, online time distribution, university cyber psychology attention, and university cyber psychology education four aspects rank matrix.

$$U_{2} = \{23, 7, 4, 0\}$$
$$U_{2} = \{7, 18, 8, 0\}$$
$$U_{3} = \{0, 9, 13, 12\}$$
$$U_{4} = \{3, 0, 9, 21\}$$

Obtained weighted vector from rank 1 to rank 2:

$$\beta = \{\beta_1, \beta_2, \beta_3, \beta_4\} = \{0.4, 0.3, 0.2, 0.1\}$$
$$U_i^* = U_i \cdot \beta^T$$

 $U_1^* = 12, U_2^* = 9.7, U_3^* = 6, U_4^* = 5$

The paper takes normalization processing:

$$U_1^* = 0.35, U_2^* = 0.3, U_3^* = 0.2, U_4^* = 0.15$$

Figure 2 : Change model

	Network	Counselor	Counselor	Consultant	Consultant	
	communication tool	professional level	language skills	adaptability degree	problem property	
Total frequency	174	570	411	20.4	246	
number N	1/4	570	411	204	246	
Sum frequency%	16.7%	54%	39%	19.5%	23.5%	

TABLE 2 : Cyber psychology consulting effect influence factors

O Sechnology An Indian Journal

1559

TABLE 3 : University	cvber i	osvchology	evaluation indicator system
		so, enoig,	

Network communication tool U_1	Online time distribution U_2	University cyber psychology attention U_3	University cyber psychology education $ U_4 $
• • • •			Psychological education
Instant messaging u_{11}	Online game time u_{21}	Netnews real time u_{31}	course u_{41}
	Computer knowledge	Network psychology	Psychological counseling cyber
Search engine u_{12}	learning u_{22}	course u_{32}	psychology u_{42}
	Online course education	Police network	Student cyber psychology learning
Online video u_{13}	time u_{23}	attention u_{33}	status u_{43}
	Other networks	Campus network	
Online game u_{14}	consumed time u_{24}	monitoring u_{34}	

Microblog u_{15}

TABLE 4 : Four kinds of factors importance degree ranking statistics						
Classification	Rank 1	Rank 2	Rank3	Rank 4		
Network communication tool U_1	23	7	4	0		
Online time distribution U_2	7	18	8	0		
University cyber psychology attention U_3	0	9	13	12		
University cyber psychology education U_4	3	0	9	21		

TABLE 5 : Remarks membership						
Englandian man	Set scores interval					
	0-60	90-100				
Very good	0	0	0.05	0.95		
Good	0	0.05	0.9	0.05		
Normal	0.05	0.9	0.05	0		
Bad	0.95	0.05	0	0		

It gets:

$$A = (0.35 \quad 0.3 \quad 0.2 \quad 0.15)$$

The paper gets remarks membership by evaluating university cyber psychology, as TABLE 5 shows.

The paper obtained evaluation on one university cyber psychology each indicator, it gets TABLE 6.

By above model, it gets single layer indicator weight factor fuzzy set is:

$$U_{1}^{*} = \{U_{11}, U_{12}, U_{13}, U_{14}, U_{15}\} = \{0.25\ 0.25\ 0.2\ 0.15\ 0.15\}$$
$$U_{2}^{*} = \{U_{21}, U_{22}, U_{23}, U_{24}\} = \{0.54\ 0.1\ 0.24\ 0.14\}$$
$$U_{1}^{*} = \{U_{31}, U_{32}, U_{33}, U_{34}\} = \{0.4\ 0.3\ 0.1\ 0.2\}$$
$$U_{1}^{*} = \{U_{41}, U_{42}, U_{43}\} = \{0.3\ 0.4\ 0.3\}$$

By TABLE 6, and combine with TABLE 3 evaluation remarks membership, the paper gets network communication tool, online time distribution, university cyber

BioTechnology An Indian Journal

Full Paper 🕳

Each layer indicator	Evaluation value	Each layer indicator	Evaluation value
Instant messaging u_{11}	Very good	Netnews real time u_{31}	Very good
Search engine u_{12}	Very good	Network psychology course u_{32}	Good
Online video u_{13}	Normal	Police network attention u_{33}	Good
Online game u_{14}	Normal	Campus network monitoring u_{34}	Normal
Microblog u_{15}	Normal	Psychological education course u_{41}	Good
Online game time u_{21}	Very good	Psychological counseling cyber psychology u_{42}	Very good
Computer knowledge learning u_{22}	Very good	Student cyber psychology learning status u_{43}	Normal
Online course education time u_{23}	Very good		
Other networks consumed time u_{24}	Good		

TABLE 6 : One universit	y cyber psycholog	y each indicator obtaine	d evaluation value

psychology attention, and university cyber psychology education each aspect evaluation set:

0 0.05 0.95 0 0.05 0.95 0 $U_1 = \begin{vmatrix} 0 & 0.05 & 0.95 & 0.05 \end{vmatrix}$ Network communication tool 0 0.05 0.95 0.05 0 0.05 0.95 0.05 0 0.05 0.95 0 0.05 0.95 0 0.05 0.95 0 0 Online time distribution $U_2 =$ 0 0.05 0.9 0.05 University psychology cyber attention 0.05 0.95 0 0.05 0.9 0.05 0 $U_{3} =$ 0.05 0.9 0.05 0 0.05 0.05 0.9 0 psychology University cyber education 0.05 0.95 0 $U_4 = \begin{bmatrix} 0 & 0.05 & 0.9 \end{bmatrix}$ 0.05 0 0.05 0.9 0.05

 $B_i = A_i \cdot R_i$

Make normalization processing with obtained B_i , it gets fuzzy evaluation matrix.

	(B_1)		(0.07	0.27	0.13	0.53
- D	B_2		0	0.1	0.4	0.5
D =	B_3	=	0.08	0.46	0.38	0.08
	$\left(B_{4} \right)$		0.14	0.2	0.3	0.36)

It gets comprehensive evaluation value: $Z = U^* \cdot B = (0.31 \quad 0.29 \quad 0.23 \quad 0.17)$

CONCLUSION

Fuzzy mathematics is from people cognition on external world, due to suffer numerous factors impacts; human race cognitive things are fuzzy. Fuzzy mathematics is a theoretical system that formed by fuzzy set and fuzzy logic, fuzzy mathematics applies in pattern recognition and artificial intelligence, as a newer discipline, fuzzy mathematics present some factor sets again into people's

1561

awareness. By establishing attribute scales on one object, carry out fuzzy mathematical analysis of one object, firstly the object should have fuzziness or uncertainty, and researched objects should have multiple influence factors' constraints. The paper gets comprehensive evaluation value according to fuzzy comprehensive evaluation model analysis, because 0.31 > 0.29 > 0.23 > 0.17, it shows its located indicators range is within the score interval among 0-60, therefore it can show that contemporary students' cyber psychological health evaluation index is lower, which should be taken more seriously.

ACKNOWLEDGMENT

Supported by General Institutions of Higher Learning, postgraduate students' scientific research and innovation funding plan of Jiangsu Province (Grant No. CXZZ13_0142).

REFERENCES

- [1] Chen Yi-hong; The Application of Micro-blogging in Ideological and Political Education of College Students[J]. Journal of Wuhan Institute of Technology, **12(2)**, 113-116 (**2013**).
- [2] Du Cheng-yu; The ideological and political education of college students under the background of the rising of micro-blog[J]. Journal of Nanchang College of Education, 9, 25-26 (2012).

- [3] Fan Hui-ying; College Students' Internet Ideological and Political Education Interaction[J]. Journal of Jimei University, **11(4)**, 79-83 (**2010**).
- [4] Guo Hongming, Wang Yongcan; The Micro-blog Interactive Mode of Ideological and Political Education in Colleges and Universities[J]. Journal of higher Education Management, **6**, 106-110 (**2013**).
- [5] Guo Yu-wei; Study on the Interactive Relationship between College Studentsÿ Career Planning Education and Ideological and Political Education[J]. Liaoning Higher Vocational Technical Institute Journal, 8, 85-86 (2013).
- [6] Hu Lijun; Research on the ideological and political education for the college students under the inOuence of micro blog[J]. Journal of Nanjing Radio & Television University, **3**, 31-34 (**2012**).
- [7] Sun Qiang; On the Core Principle of College Ideological and Political Education[J]. Journal of Yangzhou University (Higher Education Study Edition), 14(5), 78-81 (2010).
- [8] Wang Yi; Application Design and Discussion about College Ideological and Political Education Microblog[J]. Journal of Qiqihar Junior Teachers' College, 4, 5-7 (2012).
- [9] Yang Ying; Constructing the Micro Mode of College Students' Ideological and Political Education[J]. Journal of Ningbo Institute of Education, 4, 20-22 (2012).

BioTechnology An Indian Journal