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ABSTRACT

Space-time fluctuations of meteorological parameters exhibit selfsimilar
fractal fluctuations. A general systems theory developed by the author
predicts universal inverse power law form incorporating the golden mean
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for the fractal fluctuations. The monthly total rainfall for the Indian region
for the period 1871 to 2011 (141 years) was analysed. The model predicted
distribution isin close agreement with observed fractal fluctuations of all

size scales. The results of the study are presented.
© 2014 Trade Sciencelnc. - INDIA

INTRODUCTION

Dynamical systems such as fluid flows exhibit
selfamilar fractd fluctuations. Fractd fluctuationssig-
nify non-loca connections, i.e., long-rangecorrelaions
inspaceand time. Love oy and Schertzer (2012) have
done pioneering work duringthelast 30 yearstoiden-
tify conclusively thesdfamilar fractd natureof fluctua-
tionsinmeteorologica parameters. The Gaussian prob-
ability digtribution used widdy for andysisand descrip-
tion of large data setsunderestimatesthe probabilities
of occurrence of extreme events such as earthquakes,
heavy rainfdl, etc. Theassumptionsunderlyingthenor-
mal distribution such asfixed mean and standard de-
viation, independenceof data, arenot vaidfor redl world
fracta datasetsexhibiting ascale-free power law dis-
tribution with fat tails (Selvam, 2009). Thereisnow
need toincorporate newly identified fractal conceptsin
standard meteorol ogical theory for redisticamulation
and prediction of atmospheric flows. Theauthor has
developed agenera systemstheory model (Selvam,

1990, Selvam, 20123, Selvam, 2012b, Selvam, 2013)
for fractd fluctuationsin dynamicd sysems. Themodd
predictsuniversal inverse power law formincorporat-
ing thegolden mean (t H” 1.618) for the probability
distribution of amplitudesof fractd fluctuations. The
mode predictionsarein agreement with monthly total
ranfal over thelndianregionfor the 141-year period
1871-2011. Thepaper isarranged asfollows. Section
2 givesabrief summary of thegenera systemstheory
modd predictionsfor fracta fluctuationsin dynamical
systems. Section 3 givesdetailsof dataand analysis
techniques. A brief discussion of resultsin Section4is
followed by Conclusionsin Section 5.

GENERAL SYSTEMSTHEORY FOR
FRACTAL FLUCTUATIONS

Power (variance) spectraof fracta fluctuationsex-
hibit inversepower law form f* wheref isthefrequency
(or wavelength of theeddies) and a the exponent indi-
cating (i) selfsmilar fractd fluctuationsresult fromthe
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coexistenceof acontinuum of eddies(waves) (i) fracta
fluctuationsexhibit long-range space-time correlations
sincetheamplitudesof larger and smaller sizeeddies
are related to each other by the scale factor o alone
independent of other characteristics of the eddies.
Thegenera systemstheory modd (Selvam, 1990,
Sdvam, 2007, Sdvam, 20123, Selvam, 2012b, Selvam,
2013) is based on the above observational fact that
fractd fluctuationssignify an underlying eddy continuum.
Themodel isbased on the ssimple concept that large
eddiesresult from successive space-timeintegration of
enclosed smdll-scal efluctuations (eddies) and ogousto
Townsend’s (1956) concept that large eddies are en-
velopesenclosingsmaller scadeeddies. Themode pre-
dictionsare
i Startingfrom unit primary eddy (radiusr), the suc-
cessive stages of largeeddy (radiusR) growthis
associated with scale (length) ratio zequal to R/r
and forms an eddy continuum which can bere-
solvedinto an overall logarithmic spiral trgectory
tracing the quas periodic Penrosetiling patterniden-
tified as quasi crystalline structurein condensed
matter physics. Startingwith unit primary eddy, suc-
cessive stages of large eddy growthisassociated
with scaleratioz=1t0 1, 2, 3, etc. The primary
eddy growthregionisz=0to 1.
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Theprobability distribution of amplitudeand vari-
ance (square of amplitude) of fractal fluctuations
(space/time series) when plotted with respect to
normalized gandard deviationt equa to mean/stan-
dard deviationfollow thesameinverse power law
formP.

For therangeof normaized deviationt valuest>1
andt<-1, theprobability distribution P =1,
Normalised deviationt ranging from-1to +1 cor-
respondsto the primary eddy growth region. In
thisregion the probability P isshownto beequal

to p = ¢ *wherek = \/g isthesteady statefrac-

tiond volumedilution k of thegrowing primary eddy
by internal smaller scale eddy mixing (Selvam,
2013).

Themodd predicted universal inverse power law
distributionisvery closeto the statistical normal
distributionfor normalized deviationt valuesless
than 2 and exhibitsalongfat tail for t valuesmore
than 2, i.e., extreme eventshaveahigher probabil -
ity of occurrencethan that predicted by statistical
normal digtributionasfoundin practice. Thedtatis-
tical normal distribution and themodel predicted
universa inversepower law distribution areshown

fractal fluctuations probability distribution
comparison with statistical normal distribution
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Figurel: Model predicted probability distribution P along with the corresponding statistical normal distribution with
probability valuesplotted on linear and logarithmic scalesr espectively on theleft and right hand sides.
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Universal inverse power law distribution for fractal fluctuations

Indian region rainfall (1871-2011) monthly (Jan. to Dec.) totals
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Figure2: Themonthwiseaver ageand standard deviation valuesof rainfall for the 141-year period (1871-2011) for theeight

meteor ological subdivisonsof India

inFigure 1 (Selvam, 2013).

v Fracta fluctuationssignify quantumlikechaossince
the property that the additiveamplitudesof eddies
when squared represent the probability densitiesis
exhibited by the subatomic dynamicsof quantum
systems such astheelectron or photon.

DATA

Monthly (January to December) Data (upto 1 deci-
mal inmm) for the 141 year period (1871-2011) for
the eight meteorological subdivisionsof India(i) All-
India(ii) Homogeneous(iii) Core-Monsoon (iv) North-
west (V) West Centrd (vi) Central Northeast (vii) North-
east (viii) Peninsular were obtained from ftp://
www.tropmet.resin/pub/datalrain/iitm-regionrf.txt and
used for the study.

Analysesand results

Each data set wasrepresented asthefrequency of
occurrencef(i) in asuitablenumber n of classintervas

x(i), i=1, n covering the range of values from mini-
mumto the maximumin the data set. The classinter-
val x(i) represents dataset valuesin the range x(i) +
AX, where Axisaconstant. The average av and stan-
dard deviation sd for the data set iscomputed as

> [x(0) x £ (i)]
av=-_t———
%f(i)
%{[x(i)—av]zx 10}
var = -
1)
sd = sgrt(var)

The monthwise average and standard deviation
vauesof rainfal for the 141-year period (1871-2011)
for the eight meteorological subdivisionsof Indiaare
giveninFigure?2.

Thenormalized deviationt valuesfor classinter-
valst(i) werethen computed as
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1) =

Theamjaiveperoatageprobdilitiesof occur-
rencecmax(i) and cmin(i) were then computed start-
ing respectively from themeaximum (i=n) and minimum
(i=1) dassinterva vauesasfollows.

z[x()x f(|)]
z[xox f(|)]

cmax(i) =

z[xox {0)
4 %1000
z[xox {0)

cmin(i) =
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The 12-month average and standard deviation of
cumul ative percentage probability vaues crmax(i) and
cmin(i) were computed for each meteorol ogica sub-
division and plotted with respect to corresponding nor-
malized deviationt(i) va ueswith logarithmic scalefor
the probability axis (Figure 3) alongwith model pre-
dicted universal inverse power law distribution. There
isaclose correspondence between model predicted
and observed probability distributions of amplitudes of
fractal fluctuationsof dl sizescalesinIndianregionrain-
fdl.

DISCUSSION

Theprobability distribution P of amplitudesof fractd

Indian region rainfall (1871-2011) monthly (Jan. to Dec.) totals
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Figure3: Thel12-month averageand standard deviation of cumulativeper centageprobability valuesfor each meteor ological
subdivision and plotted with respect to corresponding normalized deviation t(i) valueswith logarithmic scalefor the probability
axisalongwith modéd predicted univer sal inver sepower law distribution.

fluctuationsin Indianregionrainfal for fluctuationsof al
sizescalesdosdy followsthe generd systemstheory
mode predicted universa inverse power law distribu-
tion P=1*wheret is the golden mean ( =1.618) and
t thenormalized deviation equal to mean/standard de-
viation. Themodd predicted distributionisclosetothe
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observed distribution particularly for thenormalized
deviationt valuesgrester than 2 which correspond to
extreme eventswith higher probability of occurrence
than that predi cted by the tatistical normal distribution.

Inverse power law distribution for fracta fluctua-
tionsimplieslong-range space-time correlaionsmani-
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fested asmemory or persistencein the space-timevari-
ability of themeteorologica parameter suchasrainfal,
temperature, etc. Kantelhardt et a. (2006) state that
the pers stenceandysisof river flowsand precipitation
has beeninitiated, about half acentury ago, by H. E.
Hurst, who found that runoff recordsfrom variousriv-
ersexhibit “long-range statistical dependencies” (Hurst,
1951). Later, similar long-term correl ated fluctuation
behavior has also been reported for many other geo-
physical recordsincluding temperature and precipita-
tion data(Kantelhardt et al., 2006). Characterizing and
understanding the persistence of wet and dry condi-
tionsin thedistant past gives new perspectiveson con-
temporary climate changeanditscauses(Bundeet d.,
2013).

CONCLUSION

A generd systemstheory modd developed by the
author predictsuniversal inverse power law formin-
corporating thegolden meanfor thefracta fluctuations.
Themode predicted distributionisin close agreement
with observed fractd fluctuationsof al Szescaesinthe
monthly total rainfall inthelndian region for the 141
year period 1871 to 2011.

ACKNOWLEDGEMENT

The author is grateful to Dr. A. S. R. Murty for
encouragement during the course of the study.

REFERENCES

[1] A.Bunde, U.Biintgen, J.Ludescher, J.Luterbacher,
H.von Storch; Is there memory in precipitation?
Nature Climate Change.DOI: doi:10.1038/
nclimatel830, 3, 174-175 (2013).

A.M.Selvam 89

——==Jurrent Research Papser

[2] H.E.Hurst; Long-term storage capacity of reser-
voirs. Trans.Am.Soc.Civ.Eng., 116, 770-799
(1951).

[3] JW.Kantelhardt, E.Koscielny-Bunde, D.Rybski,
P.Braun, A.Bunde, S.Havlin; Long-term persistence
and multifractality of precipitation and river runoff
records. J.Geophy. Res,, doi: 10.1029/2005JD005881,
111, D01106 (2006).

[4] S.Loveoy, D.Schertzer; The Weather and Climate:
Emergent Laws and Multifractal Cascades. Cam-
bridge University Press. New York, 425 (2012).

[5] A.M.Selvam; Deterministic chaos, fractals and
quantumlike mechanicsin atmospheric flows. Can.
J. Phys., http://xxx.lanl.gov/html/physics/0010046,
68, 831-841 (1990).

[6] A.M.Selvam; Chaotic Climate Dynamics. Luniver
Press. UK, (2007).

[7] A.M.Selvam; Fractal fluctuations and statistical
normal distribution. Fractals. http://arxiv.org/pdf/
0805.3426, 17(3), 333-349 (2009).

[8] A.M.Selvam; Universal spectrum for atmospheric
suspended particul ates: comparison with observa-
tions. Chaos & Complex. Lett., http://arxiv.org/abs/
1005.1336, 6(3), 1-43 (2012a).

[9] A.M.Selvam; Universal spectrum for atmospheric
aerosol sizedistribution: comparison with pcasp-b
observations of vocals 2008. Nonlinear Dynamics
and Systems T heory. http://arxiv.org/abs/1105.0172,
12(4), 397434 (2012b).

[10] A.M.Selvam; Scale-free Universal spectrum for
atmospheric aerosol size distribution for Davos,
MaunalLoaand Izana. Int. J. Bifurcation & Chaos,
23(2), 1350028 (13 pages) (2013).

[11] A.A.Townsend; The Structure of Turbulent Shear
Flow. 2nd ed., Cambridge University Press: Lon-
don, U. K., 115-130 (1956).

e Snoivonmental Science
A ndian ﬂowumé


http://xxx.lanl.gov/html/physics/0010046,
http://arxiv.org/pdf/
http://arxiv.org/abs/
http://arxiv.org/abs/1105.0172,

