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ABSTRACT

Protonation of the reactive intermediates produced in the reaction between
Trimethyl Phosphite and dimethyl acetylenedicarboxylate by resorcinol 5-
methylresorcinol 2,5 -dihyroxyasetophenone, 4 - chlro - 2 -methvlphenol, 2
- hydroxypyridine, or 4 - hydroxypyridine - leads tovinylphosphonium salts,
which undergo michail addition with the conjugate basi of the OH-acid to
produce functionalized 2-oxo-2H-chromenes (coumarins) and azachromenes
in good yields.  2011 Trade Science Inc. - INDIA

INTRODUCTION

2-Oxo-2H-chromens (coumarins) and their deriva-
tives have stimulated extensive research in biology, or-
ganic chemistry and medicine, due to their antibiotic[1],
anti-coagulant[2], anticancer[3], anti-inflamatory[4], and
anti-HIV[5] properties. A number of natural or synthetic
derivatives of coumarin have found pharmaceutical ap-
plications[6]. The synthesis of this heterocyclic uncleus is
of current interest. Coumarins have been synthesized by
several methods including von pechman[7], Knovenagel[8],
and Reormatsky[9], reactions. Recently, we reported a
new and operationally convenient approach to the syn-
thesis of coumarin derivatives based on the aromatic elec-
trophilic substitution reaction between the conjugate base
of substituted phenols and a vinylphosphonium salt[10].

As Part of our current studies[11] on the develop-
ment of new routes to heterocyclic and carbocyclic sys-

tems, we now report the reaction between phenols or
hydroxyridines and dimethy actylendicarboxylate
(DMAD) in the presence of trimethyl phosphate. This
reaction leads to functionalized 2-oxo-2H-chromenes
(coumarins) or azacoumarins. Thus, rection of DMAD
and trimethyl phosphate in the presence of resorcinol,
5-methylresorcinol, 2,5-dihydroxyacetophenone, 4-
chloro-2-methylphenol, 4-hydroxypyridine or 2-
hydroxypyridine leads to functionalized 40 carboxym-
ethyl-2-oxo-2H-chromenes 1a-d and azacoumarins 2
and 3, (see Scheme 1). The reactions of teriaryl phos-
phorus compounds with DMAD and, on occasion, other
acetylenic systems have been dixcussed with emphasis
upon the synthesis of phosphorus heterocycles[12].

RESULT AND DISCUSSION

The reaction of DMAD with resorcinol in the pres-
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ence of trimethyl phosphate was carried out on toluene
at reflux temperature. The light-yellow obtained from
the reaction mixture was identified as methyl 5-hydroxy-
2oxo-2h-chromene-4-carboxylate (1a) (Scheme 1).
The structure of 1a was deduced from its elemental
analyses and its IR, 1HNMR and 13CNMR spectral
data[13]. The mass spectrum of this compound displayed
molecular ion peak at m/z = 436. Any initial fragmenta-
tion involved the loss of ester moieties. Under similar
reaction conditions, 5-methylresorcinol produced me-
thyl 5-hydroxy-7-methyl-2-oxo-2H-chromene-4-
caroxylate (1b). The 1H and 13CNMR spectra of 1b
are similar to those 1a except for the aromatic residue,

which exhibits characteristic signals with appropriate
chemical shifts (see Experimental section).

A plausible explanation for the formation of 1a is
proposed in Scheme 2. On the basis of the chemistry
of trivalent phosphorus uncleophiles[6,7], it is reasonable
to assume that compound (4) results from an initial ad-
dition of trimethyl phosphate to the acetylenic ester.

Subsequent protonation of the 1:1 adduct 4 by the
NH-acid leads to 5. Then, the positively charged ion
might be attacked by the conjugate base of resorcinol
to produce the compound (6), which converted to 7 by
[1.2]-H+ shift. The intermediate 8, formed by elimina-
tion of trimethyl phosphate, is converted to compound
(1a) by intramolecular lactonization (Scheme 2).

The yellow oil isolated from the reaction mixture of
2,5-dihydroxyacetophenone and DMAD in the pres-
ence of trimethyl phosphate was identified as methyl 7-
acetyl-6-hydroxy-2-oxo-2H-chromene-4-carboxylate
(1C) (Scheme 1). Structure 1c was assigned to the iso-
lated product on the basis of its 1HNMR and 13CNMR
spectra. Using 4-chloro-2-methlphenol as the proton
source/uncleophile leads to pale yellow crystals identi-
fied as methyl 6-chloro-8-methyl-2-oxo-chromene-4-
carboxylate (1d) (Scheme 1). Compounds (1b-1d) are
formed by a mechanism similar to that outlined for 1a
(see Scheme 2).
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The reaction of one equivalent of 2-hydroxypyridine
or 4-hydroxypyridine with two equivalents of one
DMAD in the presence of two equivalents of trimethyl
phosphate was two carried out in refluxing CH

2
Cl

2
. The

orange oil separated from reaction mixtures were iden-
tified as methyl 2-oxo-2h-pyrano[2,3-b]pyridine-4-

carboxylate(2) or methyl 2-oxo-2H-pyrano[3,2-
c]pyridine-4-carboxylate(3) (Scheme 1).

In conclusion the presented reactions provide a
simple entry into the synthesis of functionalized coumarins
and azacoumarins of potential interest. The present
method carries the advantage that, not only is the reac-
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tion performed under neutral conditions, but also the sub-
stances can be mixed without any activation or modifica-
tion. The one-pot nature of the present procedure makes
it an acceptable alternative to multi-stepapproaches[14].
The present coumarin synthesis complements the older
established methods and offers significant advantages for
the synthesis of coumarins having acid sensitive functional
groups. In contrast, the well-known von pechmann syn-
thesis[15,16] entails strongly acidic conditions and frequently
affords low and erratic yields.

EXPERIMENTAL

Melting points were measured on an Electrother-
mal 9100 apparatus. Elemental analyses for C, H and
N were performed using a Heraeus CHNO Rapid ana-
lyzer. IR spectra were recorded on a shimadzu IR-460
spectrometer. Mass spectra were recorded on a
FINNIGAN-MAT 8430 mass spectrometer operat-
ing at an ionization potential of 70 eV. The NMR spec-
tra were recorded at 300(1H) and 75 (13C) MHz on a
Bruker Avance DPX-300 MHz NMR instrument with
CDCl

3
 as solvent. Chemical shifts () are reported rela-

tive to TMS as the internal standard. The reagents and
solvents used in this work were obtained from Aldrich
silica gel 100 mesh chromatography plates were pre-
pared from silica gel 60 mesh.

Preparation of coumarin derivatives examplified
on methyl 5-Hydroxy-2-oxo-2H-chromene-4-
carboxylate(1a); Typical procedure

To a stirred solution of trimethyl phosphate (4 mmol)
and resorcinol (2mmol) in toluene (17mL) was added
drop wise a mixture of DMAD (4mmol) in toluene (3ml)
at -50C for 10 min. the reaction mixture was then al-
lowed reduced pressure and the residue was purified by
column chromatography using n-hexane-EtOAc as elu-
ent to produce 3 as pale yellow oil, yield: 0.77g(94). IR
(KBr) (õ

max
/cm-1): 3421(OH), 1724(C=O), 1598(C=C),

1232 and 1287(C-O). 1H NMR: ä = 3.80 (s, 3H, OMe),
5.03 (s, Br, OH), 6.43(s, CH), 6.46 (dd, CH, 3J

HH
= 6

Hz) ppm. 13CNMR: ä = 55.6 (OMe), 101.9(CH),
106.7(2CH), 108.1 (CH), 130.5(2C), 157.2(2C), 161.3
(2C) ppm. MS: m/z (%) = 439 (M++1, 7), 326 (100),
298(74), 230 (58), 57(47), 41(38) Anal. Calculated for
C

20
H

22
N

2
O

9 
(436.4): C, 55.04; H, 5.54; N, 6.42.

Founded C, 55.26; H 5.71; N, 6.46%.

Methyl 5- hydrocxy7 - methyl-2-oxo-2H-
chromene-4-carboxylate (1b)

Yield 0.47g (57%). IR (KBr) (õ
max

/cm-1); 1731
(C=O), 1463 (C=C), 1286 and 1273 (C-O). 1H NMR:
ä = 2.34 (s, 3H, Me), 3.95(s, 3H, OMe), 6.44 (s,
CH), 6.52 (s, CH), 6.70 (s, CH), 11.84 (s, 1H, OH)
ppm. 13CNMR: ä = 22.5 (Me), 54.2 (OMe), 103.6
(CH), 115.4(CH), 117.9(C), 128.6(C), 129.4 (CH)
m133.2(C), 157.4(2C), 168.3 (C), 170.3 (C) ppm.
MS: m/z 9%) = 436(M++1, 7), 326 (100), 298(74),
230 (58), 57 (47), 41 (38). Anal. Calculated for
C

20
H

22
N

2
O

9
 (436.4): C, 55.04; H, 5.54; N, 6.42.

Founded: C, 55.26; H, 5.71; N, 6.46%.

Methyl7-acetyl-6-hydroxy-2-oxo-2H-chromene-4-
carboxylate (1c)

Yellow oil, yield: 0.42g (52%). IR (KBr) (õ
max

/cm-1):
1727 and 1650 (C=O), 1487 (C=C), 1287 and 1222
(C-O). 1HNMR: ä = 2.64(s, 3H, Me), 3.82 (s, 3H,
OMe), 6.93 (s, CH), 7.11 (s, CH), 7.19 (s,CH),11.88
(s,OH) ppm. 13CNMR ä = 28.7(Me), 53.6(OMe),
111.2(CH), 118.1(CH), 120.4 (2C), 133.2(CH), 142.4
(C), 151.6(C), 156.2 (C), 159.5(C), 167.2 (C),
198.2(C=O) ppm. MS:m/z(%) = 436(M++1,7),
326(100), 298(74), 230(58), 57(47), 41(38). Anal
Calculated for C

20
H

22
N

2
O

9
 (436.4), C: 55.04; H, 5.54;

N, 6.42. Founded: C: 55.26; H, 5.71; N, 6.46%.

Methyl6-chloro080methyl-2-oxo-2H-chromene-4-
carboxylate (1d)

Pale yellow crystals (from 2:1 n-hexane-EtOAc),
m.p. 94-96 0C; yield: 0.71g (87%). IR (KBr) (õ

max
/cm-1):

1773 and 1736 (C=O), 1468 (C=C), 1191 and 1154
(C-O). 1HNMR: ä = 2.30 (s, 3H, Me), 2.82 (dd, CH,
3J

HH
=6 Hz, 3J

HH
= 3Hz), 3.14(dd, CH, 3J

HH
=6Hz.

3J
HH

=3Hz), 3.37 (s, 3H, OMe), 3.92(dd, CH,
3J

HH
==3Hz, 3J

HH
=3Hz), 7.15(s, CH), 7.17(s, CH)

ppm. 13CNMR: ä = 16.1 (Me), 31.4 (CH), 41.6 (CH
2
),

53.4(OMe), 120.8(CH), 122.6 (C), 126.2 (C), 129.2
(CH).131.4 (C), 148.8 (C), 166.0 (C), 171.1 (C) ppm.
MS (EI, 70 eV): m/z (%) = 196 (M++2, 8), 194 (M+,
34), 149(34), 139(28), 103(36), 77(100), 63(30),
59(36), 57 (76), 51 (78), 43(94), 41(98). MS: m/z
(%) = 436 (M++1, 7), 326(100). 298(74), 230(58),
57(47) m 41(38). Anal. Calculated for
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C
20

H
22

N
2
O

9
(436.4): C, 55.04; H, 5.54; N, 6.42.

Founded: C, 55.26; H, 5.71; N, 6.46%.

Methyl 2-oxo-2H-pyrano [2, 3-b] pyridine-4- car-
boxylate (2)

Light yellow oil, yield: 0.47g (90%).IR(KBr) (õ
max

/
cm-1): 1731(C=O), 1462(C=C), 1273(C-O). 1HNMR:
ä = 3.87 (s, 3H, OMe), 7.01(t, Ch, 3J

HH
=9Hz), 7.13(s,

CH), 7.59(dd, CH, 3J
HH

=9Hz, 4J
HH

=6Hz)ppm. 13C
NMR: ä = 53.6 (OMe), 111.2(CH), 120.4(CH),
124.2(C), 133.2(CH), 142.4(CH), 151.6(C),
159.5(C), 165.7(C), 167.2 (C), 171.1 (C)ppm. MS:
m/z(%) = 436(M++1, 7), 326(100), 298(74), 230(58),
57(47), 41(38). Anal. calculated for C

20
H

22
N

2
O

9

(436.4): C, 55.04; H, 5.54; N, 6.42, founded: C, 55.26;
H, 5.71; N, 6.46%.

Methyl2-oxo-2H-pyrano [3, 2-c] pyridine-4-car-
boxylate (3)

Pale yellow oil, yield: 0.69g (84%). IR (KBr) (õ
max

/
cm-1): 1731 (C=O), 1435(C=C), 1264(C-O).
1HNMR: ä = 3.87 (s, 3H, OMe), (d, CH, 3J

HH
=9Hz),

7.29(s, CH), 7.85(s,Ch), 7.93(d, CH, 3J
HH

=9Hz) ppm.
13CNMR: ä = 53.6 (OMe), 111.2(CH), 117.9(C),
130.7 (CH), 132.2(CH), 151.1(CH), 161.0(C),
165.7(C), 168.2(C), 176.9(C), m/z (%) = 436 (M++1,
7), 326(100), 298(74), 230(58), 57($&), 41(38). Anal.
calculated for C

20
H

22
N

2
O

9
 (436.4): C, 55.4; H, 5.54;

N, 6.42. founded: C, 55.26; H, 5.71; N, 6.46%.
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