October 2008

Volume 4 Issue 5

Organic CHEMISTRY

Trade Science Inc.

An Indian Journal Full Paper

QSAR;

Aniline derivatives;

Valence connectivity index;

Molar refractivity;

Shape index.

OCAIJ, 4(5), 2008 [369-374]

Topological descriptors based quantitative structure activity relationship study of aromatic amines

P.P.Singh*, Anil Kumar Prajapati Department of Chemistry, M.L.K.(P.G.)College, Balrampur, U.P., (INDIA) E-mail: dr_ppsingh@sify.com Received: 13th August, 2008 ; Accepted: 18th August, 2008

ABSTRACT

QSAR study of 29 aniline derivatives whose carcinogenic activities are reported in terms of log P has been made. QSAR models have been developed with the help of descriptors, connectivity index, valence connectivity index, shape index, molecular weight, accessibility surface area and molar refractivity. Thirty-eight models have been found to have high degree of predictive power with regression coefficient above 0.9 and 12 models above 0.9597. The combination of descriptors providing the best model is log P, valence connectivity index, shape index and molecular weight. © 2008 Trade Science Inc. - INDIA

INTRODUCTION

Aromatic amines^[1] are common contaminant in several working environments, including the chemical and mechanical industries. Arylamines based dyes are widely used in textile industries and cosmetics^[2]. The wide use of aromatic amines together with the presence of relatively very high exposure permitted the development of epidemiological knowledge unparallel for other chemical classes. Although the major concern posed by aromatic amines derives from carcinogenic potential, the number of QSAR studies is quite limited^[3], hence needs a comprehensive study on QSAR of aromatic amines whose biological activity is reported. Recently sets of quantum chemical descriptors have been used by us for QSAR studies of testosterone and estrogen derivatives^[4-8] and topological descriptors^[9] for study of toxicity of alcohols. In this paper we report QSAR studies on carcinogencity of aromatic amines with the help of topological descriptors. The quality of QSAR has been evaluated by multi linear regression analysis.

KEYWORDS

MATERIALAND METHOD

The study materials of this paper are derivatives of aniline and are presented in TABLE 1 alongwith their carcinogenic activity in term of log P. For QSAR prediction, the 3D modeling and geometry optimization^[10-11] of all the compounds have been done with the help of Cache software using the semiempirical PM3 Hamiltonian. The values of various descriptors have been calculated using Cache Software.

Regression analysis has been made by Project Leader Program associated with Pro software of Fuzitsu. The values of descriptors that have been use for QSAR model have been evaluated using the same software by PM3 Hamiltonian method. The descriptors that have been used are defined below:

The Vertex-Connectivity Index, $\chi = \chi(G)$, of a (molecular) graph G is defined as^[12]:

$$\chi = \sum_{\substack{\text{edges}}} \left[\mathbf{d} \left(\mathbf{v}_{i} \right) \mathbf{d} \left(\mathbf{v}_{j} \right) \right]^{-1/2}$$
(1)

The sum is taken over all edges of G;d (v_i) is the

(3)

Full Paper

TABLE 1: Derivatives of aniline (along with their biological activity in term of log P)

Compd.	Substituents	Substituents at	A	
no.	at ring	functional amino group	Acuvity	
1	2-Me	Н	1.730	
2	2-OEt, 5-NHCOMe	Н	0.200	
3	3-NO ₂ , 4-OH	Н	0.930	
4	Н	Н	1.260	
5	2-Ome	Н	1.010	
6	4-Cl	Н	1.780	
7	2Cl, 5-NH ₂	Н	1.000	
8	2NH ₂ , 4Cl	Н	1.000	
9	2Me, 4-OMe	Н	1.000	
10	2-OMe, 5-Me	Н	1.480	
11	2-OMe,5-NH ₂	Н	0.230	
12	3-NO ₂ ,4-OEt	COMe	0.940	
13	2-OMe, 5-NO ₂	Н	0.960	
14	2-NO ₂ , 4-NH ₂	Н	0.430	
15	2,4,5-Me ₃	Н	2.670	
16	2-OH, 4-NO ₂	Н	0.930	
17	2-OH, 5-NO ₂	Н	0.200	
18	4-OEt	COMe	0.990	
19	4-F	Me, NO	1.830	
20	Н	Me, NO	1.690	
21	2-NH ₂	Н	0.480	
22	2,4,5,6-F ₄ ,3-NH ₂	Н	1.040	
23	2,4,6-Me ₃	Н	2.670	
24	Н	Me	1.840	
25	4-Me	Н	1.730	
26	2-OH, 5-NO ₂	Н	0.930	
27	2,4,6-Cl ₃	Н	2.820	
28	3-Me	Н	1.730	
29	2,5-Cl ₂ , 3-COOH	Н	2.000	

vertex-degree and $[d(v_i) d(v_i)]^{-1/2}$ is the weight of the i-j edge. The degree of a vertex v_{i} , $d(v_{i})$, is equal to the number of adjacent vertices. Two vertices of graph G are adjacent if there is an edge joining them.

In the case of heterosystems, the connectivity index is given in terms of valence delta values $\delta(v_i)$ and $\delta(v_i)$ of atom i and j. This kind of connectivity index (valence-connectivity index, (χv) is defined as:

$$\mathbf{W} = (1/2) \sum_{ij} [\delta(\mathbf{v}_i) \,\delta(\mathbf{v}_j)]^{-1/2}$$
(2)

Valence delta values are available for many kind of atom. The connectivity index can be generalized to include also the weighted paths pe of length l, not only the weight edges (weighted path pl of length one):[13,14]

¹
$$\chi = \sum_{\text{paths}} [\mathbf{d}(\mathbf{v}_i) \mathbf{d}(\mathbf{v}_j) \dots \mathbf{d}(\mathbf{v}_l+1)]^{-1/2}$$

Where d (v_i) d (v_i) ... d (v_1+1) are valences of vertices d (v_i) d $(v_1) \dots v_1 + 1$ in the considered path of length l. The first-, ${}^1\chi v$, second-, ${}^{2}\chi\nu$, and third-order, ${}^{3}\chi\nu$, valence-connectivity indices in this paper are calculated by Eq. (3) when valence delta are introduced into it for heterosystems.

Shape index

Shape index quantifying the shape of a chemical sample^[15]. The shape index of order 1 (Kappa 1) quantifies the number of cycles in the chemical sample.

Solvent accessible surface (SAS) area

The solvent accessible surface (SAS) area is calculated at an optimized geometry in water, the water geometry is from optimization first using Augmented MM2, then using MOPAC with PM3 parameters and the conductor like screening Model (COSMO)^[16].

Molar refractivity

Molar refractivity is calculated using the atom-typing SCHEME of Ghose and Crippen^[17].

Log P

Log P is calculated using the atom-typing scheme of Ghose and Crippen^[17].

Finally a more general but important property of chemical system is the molecular weight (MW), which has been tested as descriptors

RESULT AND DISCUSSION

The values of the descriptors of aniline derivatives obtained by PM3 calculations are included in TABLE 2. With the help of these values 90 QSAR models using different combination of descriptors have been tried, out of which 38 models provided regression coefficient above 0.9 and 12 models above 0.9597. The predicted activities of the 12 models (PA1-PA12) are included in TABLE 3 and the regression equation developed with the values of descriptors are given below:

PA1 = 0.876556*LPC+0.0820655* VCI -0.168902*SI +0.00591286*MW + 0.00734093

 $rCV^{2} = 0.934529$ $r^2 = 0.968689$ PA2 = 0.901787*LPC+0.129689*SI +0.00591284*MW +0.0044592*MR-0.0155747 $rCV^{2} = 0.927442$

S.no. of compd.	Log P calcd.	Cor	nnectivity index	Valence connectivity index		Shape index	Molecul weight	Molecular S weight		Solvent accessibility surface area		Molar Refractivity			
1	1.731		3.805		4.887		5.319	107.000	0	69.00	0	35.800			
2	0.202		6.630		8.333 10.848 194.000 105.000		00	55.051							
3	1.027		5.236		5.520		7.803	154.000	154.000		0	39.376			
4	1.263		3.394		3.964		4.342	93.000)	62.00	0	30.758			
5	1.011		4.343		5.295		6.263	123.000	n	74.00	0	37.222			
6	1 781		3 788		5.021		5 604	128.000))	74.000		35.563			
7	0.998		4 198		5 521		6 549	143.000))	78.000		40.264			
, 8	0.998		4.198		5 521		6 549	143.000	5	78.000		40.264			
9	0.758		5 27A		6.626		8 100	153.000	5 1	85.00	0	43 685			
10	1 478		J.274 A 736		6 218		7 240	300.000	5 1	81.00	0	40	263		
10	0.227		4.730		5 705		7.249	128 16	0 D	80.00	0	42	022		
11	1.022		4.730		0.010		12 440	224.214	7 6	114.00	0	41 57			
12	1.055		5 774		9.019 6 491		12.440 9.702	169 10	0 n	114.00	0	14 145			
13	1.056		5.774		0.401 5.650		0.195	100.19	2	89.00	0	44	143		
14	0.055		3.230		5.050		7.805	125.140	0	83.00	0	42.302			
15	2.005		4.609		0.732 5.520		7.289	155.200	5	81.00	0	43.882			
16	1.027		5.230		5.520		7.803	154.12	5	81.00	0	39.376			
17	0.196		4.198		4.834		6.223	124.142	2	72.00	37.153		.153		
18	0.985		6.220		7.833		9.895	179.218	179.218 101.000		50	0.351			
19	1.830		5.236		5.990		7.813	154.144	4	82.000 40.043		0.045			
20	1.691		4.843		5.689		6.894	136.15.	136.153 78.000		39	0.828			
21	0.480		3.805	4.464		5.280	108.143	108.143 68.000		35	5.459				
22	1.038		5.464		5.667		8.992	180.105		180.105		79.00	0	36	0.324
23	2.665		4.609		6.732		7.289	135.208	135.208 82.000		0	45	5.882		
24	2.311		4.305		5.834	5.834		121.182	2	75.000		75.000		40.487	
25	1.731		3.788		4.887		5.319	107.15	5	70.000		35.800			
26	1.027		5.236		5.520		7.803	154.125	5	82.000		39.376			
27	2.817		4.609		7.134		8.150	196.463		94.000		45.173			
28	1.431		3.788		4.887		5.319	107.155		70.000		35.800			
29	1.998		5.520		7.355		9.478	206.028	8	96.000		47.126			
				TABLE	E 3: Predi	cted acti	vities PA1	to PA12 c	of comp	ound					
S. no. of co	ompd.	PA1	PA2	PA3	PA4	PA5	PA6	PA7	PA8	PA9	PA10	PA11	PA12		
1		1.661	1.651	1.647	1.639	1.639	1.625	1.667	1.626	1.686	1.683	1.68	1.68		
2		0.185	0.159	0.141	0.156	0.152	0.278	0.172	0.19	0.275	0.275	0.283	0.284		
3		0.954	0.989	1.011	1.006	1.008	0.947	0.999	1.02	0.932	0.938	0.934	0.934		
4		1.257	1.251	1.255	1.244	1.245	1.189	1.239	1.21	1.25	1.252	1.247	1.247		
5		0.998	0.981	0.982	0.978	0.978	0.967	1.005	0.974	1.025	1.021	1.02	1.02		
6		1.789	1.78	1.785	1.787	1.786	1.733	1.698	1.733	1.71	1.717	1.717	1.717		
7		1.072	1.062	1.052	1.062	1.061	1.073	0.995	1.032	1.007	1.007	1.012	1.012		
8		1.072	1.062	1.052	1.062	1.061	1.073	0.979	1.026	1.004	1.007	1.012	1.012		
9		0.736	0.709	0.706	0.709	0.71	0.749	0.777	0.742	0.799	0.789	0.792	0.793		
10		0.282	0.262	0.249	0.254	0.252	0.21	0.275	0.264	0.217	0.211	0.215	0.215		
11		0.262	0.202	0.246	0.234	0.233	0.51	0.273	0.204	0.317	0.511	0.515	0.515		
12		0.076	0.007	1 009	1.006	1.007	0.940	1.018	1.025	0.947	0.950	0.957	0.00		
13		0.570	0.5547	0.551	0.55	0.55	0.570	0.526	0.551	0.508	0.572	0.513	0.512		
15		2 464	2 45	2 4 2 9	2 426	2 427	2 501	2 532	2 463	2 559	2 544	2 545	2 545		
16		0.954	0.989	1.011	1.006	1.008	0.947	1.001	1.021	0.933	0.938	0.934	0.934		
17		0.259	0.257	0.249	0.253	0.253	0.28	0.255	0.258	0.261	0.257	0.259	0.259		
18		0.902	0.879	0.875	0.882	0.878	0.938	0.878	0.891	0.979	0.986	0.989	0.99		
19		1.695	1.715	1.74	1.73	1.733	1.659	1.77	1.752	1.695	1.694	1.689	1.689		
20		1.597	1.601	1.612	1.6	1.601	1.546	1.62	1.59	1.611	1.613	1.608	1.608		
21		0.542	0.533	0.523	0.521	0.52	0.529	0.517	0.502	0.545	0.543	0.543	0.543		
22		0.935	0.991	1.036	1.038	1.049	0.967	1.164	1.165	0.891	0.866	0.867	0.867		
23		2.464	2.45	2.429	2.426	2.427	2.501	2.522	2.458	2.557	2.544	2.545	2.545		
24		2.164	2.151	2.144	2.135	2.136	2.142	2.208	2.142	2.225	2.217	2.215	2.215		
25		1.661	1.651	1.647	1.64	1.639	1.628	1.652	1.621	1.683	1.683	1.68	1.68		
26		0.954	0.989	1.011	1.006	1.008	0.947	0.997	1.02	0.932	0.938	0.934	0.934		
27		2.848	2.836	2.844	2.867	2.865	2.816	2.674	2.801	2.638	2.646	2.654	2.654		
28		1.661	1.651	1.647	1.64	1.639	1.628	1.653	1.621	1.684	1.683	1.68	1.68		
29		1.98	1.99	2.005	2.022	2.023	1.993	1.933	2.023	1.848	1.848	1.854	1.854		

TABLE 2: Values of descriptors of aniline derivatives

Full Paper

 TABLE 4: Good QSAR models with regression coefficient

 (r^2) cross-validation coefficient (rcv^2) and descriptors used

TABLE 5: Values of observed activity, predicted activity and the difference between these two activities

S. Predi no. activ	Predicted	-CV/A		Descriptors used	S. no. of Predicted activity Observed														
	activity	ruv 2	r 2		<u>compound</u>	PA1	activity	Difference											
				Log P calcd., valence	1	1.661	1.730	0.069											
1	PA1	0.934529	0.968689	connectivity index, shape	2	0.185	0.200	0.015											
				index, Molecular weight	3	0.954	0.930	-0.024											
2	PA2	0 027/1/2	0 966753	Log P calcul, snape index, Molecular weight molar	4	1.257	1.260	0.003											
2 1 A2	0.727442	0.700755	refractivity	5	0.998	1.010	0.012												
				Log P calcd., connectivity	6	1.789	1.780	-0.009											
3	PA3	0.921406	0.966175	index, shape index,	7	1.072	1.000	-0.072											
				Molecular weight	8	1.072	1.000	-0.072											
				Log P calcd., shape index,	9	0.736	1.000	0.264											
4	PA4	0.925457	0.965999	Molecular weight, solvent	10	1.253	1.310	0.057											
				Log R called shape index	11	0.282	0.230	-0.052											
5	PA5	0.926311	0.965985	Molecular weight	12	0.878	0.940	0.062											
				Log P calcd., connectivity	13	0.976	0.960	-0.016											
6	PA6	0.91164	0.96217	index, Molecular weight,	13	0.521	0.430	-0.091											
				molar refractivity	15	2 464	2 670	0.091											
				Log P calcd., valence	16	0.954	0.930	-0.024											
_			0.044.50	connectivity index, shape	10	0.259	0.200	-0.059											
7	PA7	0.906/37	0.96158	index, Molecular weight,	18	0.200	0.200	0.052											
				area	10	1 695	1.830	0.135											
		0.001014	0.960846	Log P calcd., connectivity	20	1.095	1.600	0.003											
0	DAO			index, Molecular weight,	20	0.542	0.480	0.093											
8	PA8	0.901344		solvent accessibility surface	21	0.342	0.480	-0.002											
				area	22	0.955	1.040	0.103											
				Log P calcd., valence con-	23	2.404	2.070	0.206											
9	PA9	0.891479	0.960463	nectivity index, shape index,	24	2.104	1.840	-0.324											
				Molecular Weight, solvent	25	1.001	1.730	0.069											
				Log P calcd valence	26	0.954	0.930	-0.024											
10	D 4 10	0.000.000	0.0404460	connectivity index, shape	27	2.848	2.820	-0.028											
10	PAIO	0.899623	0.960463	index, solvent accessibility	28	1.661	1.730	0.069											
				surface area	29	1.980	2.000	0.020											
		0.908388	0.960287	Log P calcd., valence	+0.0106198														
11	PAII			connectivity index, shape	$\mathbf{rCV^{2}=0.}$	91164													
				Log P calcd valance	r^2 = 0.962	217													
12	PA12			connectivity index, shape	$\mathbf{PA7} = .910534*LPC+0.0818$			00340623MW											
		0.0000000	0.00207	index, molar refractivity	+0.018737	6*SASA+0.615617													
	0.04485	, ,		· · · · · · · · · · · · · · · · · · ·	$\mathbf{rCV^{2}=0.}$	906737													
r 2 =	= 0.900/5.)			r^2 = 0.961	58													
PA3	= 0.9089	926*LPC	C+0.0323	916 *CI - 0.139629*SI	PA8=0.909	616*LPC-0.066037	8* CI+ 0.004	486398* MW-											
+0.0	+0.00647117* MW + 0.000242272					0.00776071*SASA+ 0.315788													
$rCV^{2} = 0.921406$					$rCV^{2} = 0.901344$														
r^2 =	= 0.966175	5			$r^2 = 0.960846$														
PA4=0.902819*LPC-0.127606SI+ 0.00657045*MW +0.000832663* SASA-0.00595157 rCV^2 = 0.925457					PA9 = 0.874749*LPC+ 0.128346*VCI-0.0702169*SI- 0.0035159* SASA+ 0.160653 rCV^2 = 0.891479														
										$r^2 = 0.965999$					$r^2 = 0.960463$				
										PA5 = 0.904117*LPC-0.12361*SI+ 0.00663844*MW					PA10 = 0.877748*LPC+ 0.0160929*CI+0.109343VCI-				
+0.0209738					0.0883073*SI+ 0.0381659														
rCV	^2 = 0.926	311			rCV^2 = 0.899623														
r^2 =	= 0.965985	5			$r^2 = 0.960329$														
PA6 = 0.876544*LPC-0.170017*CI + 0.00308498*MW					PA11 = 0.3	874079*LPC+ 0.11	3356*VCI -	0.081681*SI+											
Or	ganic (CHEM	ISTRY																

An Indian Journal

Graph 1: Graph between predicted activity PA1 and observed activity

Graph 2: Graph between predicted activity PA2 and observed activity

Graph 3: Graph between predicted activity PA3 and observed activity

0.0481882

rCV² = 0.908388 r² = 0.960287

PA12 =0.873820*LPC+0.114395* VCI- 0.0819386*SI0.00011381 *MR +0.0490193

r^2 = 0.960287

On the basis of the values of regression coefficient, the QSAR models have been arranged in decreasing order of quality of prediction and are included in TABLE 4.

The predicted activity PA1 gives best QSAR mod-

els with regression coefficient 0.968689 and cross validation coefficient 0.934529. With the help of these MLR equations, the activity of aniline derivatives can be best predicted. In all the above QSAR models, the first descriptor is Log P. Even the single descriptor LPC provides good predictive power. The descriptor LPC is supposed to be the prime descriptor for QSAR models. The predicted activities and the observed activity are included in TABLE 5. The closeness between the predicted activity PA1-PA3 and the observed activity is well demonstrated by the graphs drawn between the two activities in Graph1-3.

In the second best QSAR model the descriptors are log P calcd., shape index, molecular weight and molar refractivity. In this case the predicted activity is PA2 and is given by:

PA2 = 0.901787*LPC+0.129689*SI+ 0.00591284*MW+ 0.0044592*MR-0.0155747 rCV^2 = 0.927442

r^2 = 0.966753

Graph between predicted activity and observed activity PA2 of the compounds of aniline derivatives is shown in the Graph-2.

In the third best QSAR model the combination of descriptor are Log P, connectivity index, shape index and molecular weight. In this case the predicted activity is given by PA3.

PA3 = 0.908926*LPC+0.0323916*CI-0.139629*SI+ 0.00647117*MW+ 0.000242272 rCV^2 = 0.921406

 $r^2 = 0.966175$

REFERENCES

- [1] D.Y.Lai, Y.T.Woo, M.F.Argus, J.C.Arcos, S.C. DeVito, R.L.Garrett; American Chemical Society: Washington, D.C., 1-13 (**1996**).
- [2] H.Bartsch, C.Malaveille, M.Friesen, F.F.Kadlubar; Vineis.P.Eur.J.Cancer, **29A**, 1199-1207 (**1993**).
- [3] R.Benigni, A.Giutiani, R.Franke, A.Gruska; Chem.Rev., 100, 3697 (2000).
- [4] P.P.Singh, F.A.Pasha, H.K.Srivastava; QSAR and Comb.Sci., 22, 843 (2003).
- [5] P.P.Singh, H.K.Srivastava, F.A.Pasha; Bioorg.Med. Chem, 12, 171 (2004).
- [6] P.P.Singh, F.A.Pasha, H.K.Srivastava; Indian J.Chem.B., 43B, 983-991 (2004).
- [7] F.A.Pasha, H.K.Srivastava, P.P.Singh; Mol.Diver.,

Full Paper

Orqanic CHEMISTRY An Indian Journal

Full Paper

9(1-3), 215 (2005).

- [8] H.K.Srivastava, F.A.Pasha, P.P.Singh; Int.J. Quan.Chem., 103, 237 (2005).
- [9] R.K.Singh, A.K.R.Khan, V.K.Sahu, P.P.Singh; Int.J.Quan.Chem., 108, (2008).
- [10] M.C.Flanigan; A.Komornicki, J.W.Mciver; 'Modern Theoritical Chemistry Plenum Press', New York, 8 (1977).
- [11] M.J.S.Dewar, H.S.Rzepa, J.Am.Chem.Soc., 100, 777 (1978).
- [12] L.B.Kier, L.H.Hall, W.J.Murray, M.Randic; J. Pharm.Sci., 65 (1976).

- [13] M.Randic, S.Sabljic, S.Nikolic, N.Trinajstic; Int.J. Quantum.Chem., Quantum Biol.Symp., 15, 267 (1988).
- [14] S.Nikolic, M.Medic-Saric, Matijevic-Soca; Croat. Chem.Acta, 66 (1993).
- [15] L.H.Hall, L.B.Kier, K.B.Lipkowitz, D.B.boyd; 'Reviews in Computational Chemistry', Ch.9, (1992).
- [16] A.Klamt, G.Schuurmann; J.Chem.Soc.Perkin Trans., 2, 799 (1993).
- [17] A.K.Ghose et al.; J.Comput.Chem., 9, 80 (1988).