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Abstract  

Through this article, an attempt has been made to propose a heuristic method to determine wave evolution in a quantized gravitational 

field. In this paper, propagation of particles in a quantized gravitational field is studied. Instead of quantizing the gravitational field into 

superposition of plane wave solutions, here at a certain point in spacetime, the all-possible values of the field due uncertainty of the 

gravitational field at that point due to uncertainty in momentum and position of the particle curving spacetime is assigned a probability 

using the derived rules in the paper. The interaction between other fields and the gravitational field is determined by superimposing all 

possible solutions what the field would be like in every possible geometry of the curved spacetime with uncertainty of the gravitational 

field at that point due to uncertainty in momentum and position of the particle curving spacetime. 

Keywords: Physics of gravity; Gyroscopic forces of electron rotation; Temperature dependence 

 

Introduction 

Renormalization is needed for integrating over internal x in Feynman diagrams, But it can avoid it in finding a quantum theory of 

gravity, if we use general relativity's original view of curvature in spacetime cause gravity instead of gravitons. Here, we study 

evolution of a field in each of the geometries for each mass equivalence eigen-sates of the particle curving spacetime's at every 

spacetime point separated by light like intervals from a given point. This process is repeated for all point in spacetime for an 

observer. 

Due to uncertainty in position and momentum of the particle curving spacetime, there will be uncertainty in the geometry of 

spacetime at every point. 

Now by using conditional probability theory we can get the particle evolution in each of the possible geometries but in probability, 

not probability density, ie, we need phase retrieval. So, now an iterative algorithm can retrieve its phase if we have the probability 

of all possible eigenstates of its momenta. 

 

Field evolution in quantized gravitational field 

Using Schwarzschild metric, we get x
1
 = r 

Then, the geodesics equation becomes [1,2] 
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where g is the proper acceleration seen by the observer. 
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A change in curvature of spacetime at a point in spacetime due to change in position of particles should be causally connected by 

light like spacetime interval. The change in curvature of spacetime at a point  0 0,x t in spacetime due to wave packet must be 

causally connected by light like spacetime interval, i.e, x c t   . Therefore, the wave packet at 0 0,
x

x x t
c

   to induce the 

change in curvature of spacetime at 0 0,x t .  

The absolute value of time interval is taken as negative value of time interval will imply effect precedes the cause. 
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Let’s assume there is a particle A at  0 0,x t  and another particle B at 0 0,
x

x x t
c

 
  

 
 ,the particle at  0 0,x t  which will be 

accelerated due to gravity by a value     
2

2 2

3

1
( )
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t rs s
s

s

R c R
g x r R v v

r r r R

 
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, whose value is dependent on the 

distance of separation. 

 

If the particle B’s probability to exist at 0 0,
x

x x t
c

   rather than some probability less than 1 to exist at 0 0,
x

x x t
c

  , let’s 

say probability 0 0,
x

x x t
c

 
  

 
 for the particle B to exist at 0 0,

x
x x t

c

 
  

 
 then the probability of particle A being 

accelerated by 

2

2

d x

d
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x
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c

 
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 as we know 

2

2

d x

d


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depends on mass equivalence of the other particle 

2
2

2rel

p
M m

c
  and distance of separation x . Since, here relM  is constant, probability of 

2

2

d x

d




will only depend on the 

probability of the distance to separation between the particles equal to x  [3,4]. 

By Born rule, we know 
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Since proper length in change with distance of separation, the term 

2

1

2
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 is multiplied. 

 

 

Since we know sum of probability of all possibilities should be 1, therefore a condition must be set 

0 0 0 0

2

1
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We can set the normalizing constant 

0 0 0 0

2

1

1
, ,
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Let’s say there are N number of spacetime co-ordinates 0 0,
x

x x t
c

 
  

 
 where

0 0,
x

x x t
c

    is non-zero, i.e., the 

probability of the particle B described by B  has a non-zero chance of existing at 0 0,
x

x x t
c

  . Let the position co-ordinates 

that satisfy the above criterion be 0 1 0 2 0 3 0, , ...... nx x x x x x x x     . Besides it, on taking into account the uncertainty in 

momentum of the particle B at time coordinates 
31 2

0 0 0 0, , .... ,nx xx x
t t t t

c c c c
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momentum eigenvalues 1, 2 3, ..... na a a a at time 
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t t t t

c c c c
    respectively [5]. 

 

Since there is an uncertainty in momentum of the particle B, the mass equivalence of particle B be uncertain. The probability of a 

mass equivalence eigenstate is
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Let there be a particles particle A at 0 0,x t . As mentioned earlier there are N number of spacetime co-ordinates 0 0,
x

x x t
c

 
  

 
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where
0 0,

x
x x t

c
    is non zero. Since there is uncertainty in momentum, at time 

31 2
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t t t t
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t t t t
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respectively. Therefore, there are 1 2 3 .... na a a a    possible values of ( , )relg x M  which will have a non-zero probability by 

which the particle can be accelerated towards 0x x  in time interval 
0

lim 1 s

dt

R
d dt

x



  . Therefore, particle A will have a 

non-zero probability of existing in all possible coordinates   2

0
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, lim limgel
dt dt

x g x M d v d 
 

  after the time interval 

0
lim
dt

d


. 

 

If particle A described by A  has uncertainty in position such that it could be at two positions r and s at time 0t simultaneously 

such that 
2 2

0 0, , 1A Ar t s t    . In such a case, particle A will be accelerated by all values of ( , )relg x M at r and by 

( , )relg y M at s bearing a non-zero probability. Since there are 1 2 3 .... na a a a    and 1 2 3 .... mb b b b    possible values of  

( , )relg x M which particle A at r and s respectively will be accelerated by, in time interval 
0

lim 1 s

dt

R
d dt

x



  . Thus, there are 

   1 2 3 1 2 3.... ....n ma a a a b b b b        possible particle evolution since at r, there are ways the particle can evolve in 

time and at r, there are  1 2 3 .... mb b b b    ways the particle can evolve in time and 

1 2 3 1 2 3.... ....n ma a a a b b b b        maximum number of possible locations where particle A can have non-zero 

probability of existing after time interval 
0

lim
dt

d


[6,7]. 

 

To determine wave evolution in 1 dimension, first we divide the X axis into infinite infinitesimally small segments such that the 

mean position of the i
th

 segment is termed as 0

i x  and points from 0

i x  be labelled as 0

i ix x  and let 
i

relM  be one of the mass 

equivalence eigenvalue of  0

i

B

x
at t

c
   [7]. 

Let’s say using the above-mentioned rules, we get to know that the part of the wave in the 1,2,3,4….i
th

 segment can evolve in time 

interval 
0

lim
dt

d


in N1 , N2 , N3 , N3 ….Ni number of ways respectively, i.e., the part of the wave in the i
th

 segment can be can be 

accelerated by all values of  ,i i

relg x M  towards 0

i ix x where for distance of separation from the i
th

 segment 
i x , the 
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condition 0 0,
i

i i

B

x
x x t

c
    is non-zero is satisfied [1]. 

 

Let’s define a scenario as a possible particle time evolution in time interval
0

lim
dt

d


in which the part of the wave in each of the 

segments is translated from its initial position by      
2

0 0
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rel
dt dt
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 where  ,i i

relg x M is any of the 

values by which the part of the wave in the i
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 can be accelerated towards can be. 

 

This can be written in form of an equation as: 
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Here the ˆ
iT       groupg x d x v d x     translates only the part of the wave solutions of the field in i

th
 segment by any of 

the possible values of  ,i i

relg x M . 

Probability of a possible wave evolution, let’s say scenario Q:   
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Let 
0

0
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dt

t dt


   be the field after a time interval 
0

lim
dt

dt


 in scenario Q and be normalized by a normalizing co-efficient 

scenerio QC  as due to uncertainty in acceleration in each of the segments; in some scenarios the part of the wave solutions of the field 

in, let’s say the j
th

 segment accelerates faster than the part of the wave solutions of the field in any of the segments prior to it and end 

up out of phase with each other at, say x, which arises the need for normalization [7].  

 

Probability of the particle A to possess momentum p due to this scenario contributing to overall probability of particle A have 

momentum 
2 2 2 2

relp M c m c   after time interval 
0
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dt

dt


 

 
2

2 2 2 2 2

0 , (10)scenerio Q rel scenerio QscenerioQ C t dt M c m c    

of the particle A to exist in the co-ordinate x due to this scenario contributing to overall probability of particle A being at x after 

time interval 
0

lim
dt

dt

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 
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       

III Creation and Annihilation Operators in Quantized Gravitational Field 

In case of any free field, we can directly apply the same principle to get its time evolution in a quantized gravitational since quantum 

fields are superposition of wave solutions.  

 

But in case of an interacting field theory, we need to take into note redshift of each frequency node of the field in every possible 

scenario. Using the above derived rules, we can retrieve what would the frequency node look like in a quantized gravitational field. 

After superimposing all the nodes, we can get to know how the field would look like in a quantized gravitational field. 

 

 
1 1

( ) , (14)
4

E x dx e A x t
x x

 
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
  
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  

In case of any free field, we can directly apply the same principle to get its time evolution in a quantized gravitational since quantum 

fields are superposition of wave solutions.  

 

But in case of an interacting field theory, we need to take into note redshift of each frequency node of the field in every possible 

scenario. Using the above derived rules, we can retrieve what would the frequency node look like in a quantized gravitational field. 

After superimposing all the nodes, we can get to know how the field would look like in a quantized gravitational field. 

 

For example, let’s take the interacting electric field 

 

 
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We can see ( )E x  depends on  and A . Since we know   ,x  let us see what the field A  induced by the fermion is like: 

     
2

†

1

k, k, k, (15)ik x ik x

k

A Є e a e a 


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The contribution of the frequency node k of the field A to the field is      
2 †

1
k, k, k,ik x ik xЄ e a e a
     


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As we know in a gravitational field, waves are redshifted by gravity, 

 

2

(16)
2

1

r
GM

c r


 



 

where  and r are wavelength at infinitely far away from the particle and at distance r away from the particle. 

 

Therefore, momentum of the wave at distance r away from the particle will be 

2

2
1

(17)r

GM
h

c r
p





  

 

 Since 
 

   
 is the momentum is absence of a gravitational field, therefore, 

 

2

2
(18)r

GM
p p

c r
   

Let r x x  . 

Substituting value of r in the above equation, 

2

2
1 (19)r

GM
p p

c x x
 


 

Therefore, in a gravitational field, 

2

2
1 (20)ik x ik GM

e e x
c x x

    


 

As we know the uncertainty in the geometry of the space time as mentioned earlier due to uncertainty in momentum and position of 

the particle as mentioned in the second section of the article. Let us say, at the point 1 2 3, , ...x x x    at time t, there are 1 2 3, , ...N N N

spacetime geometries, each with a certain probability of it. 

 

After that, we need to find the modulus of the amplitude of that frequency node of the field in both momentum and position spaces 

of each of the 1 2 3...N N N  scenarios using the earlier derived rules and sum up all the modulus of the amplitude of that 

frequency node over all possible scenarios in both spaces to get the resultant amplitude of that frequency node of the field in both 

spaces. Then using the Gerchberg-Saxton algorithm, we can retrieve the field in the momentum space 0k A for both the 

creation and the annihilation part which can be used to get the field in position space [8]. 
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, ,0 0 (21)ik x

k

x A x A e   

     

, ,0 0 ik x

k

x A x A e   

     

 

Summary of the Above Derived Rules 

 

Let me explain the above-mentioned method, suppose the range over which the excitation in the field, i.e., particle A is non-zero be 

divided into 3 segments such that these segments have negligible width FIG.1.  

 

 

FIG. 1. The range over which the excitation in the field 

 

Using the above-mentioned rules, one can find the possible values of acceleration due to gravity with their associated probability for 

a particle in segment 1, 2 and 3. Suppose there was n, m and o number of values by which a particle could be accelerated, if present 

in any of the segments respectively. Similarly, part of the field in each of the segments is accelerated by any of the possible value of 

acceleration it could undergo in that segment for time interval 
0

lim
dt

dt


. To get the probability of this field evolution, the probability 

of the value of acceleration the part of the field in each of the segments is multiplied. Then, the field in this field evolution after time 

interval
0

lim
dt

dt


is normalized and its contribution to the overall probability of the particle existing at a point x is the sum of 

probability of the field evolution and the squared modulus of the field in that scenario.  

 

Since, there are n, m and o number of values by which a particle could be accelerated, if present in any of the segments respectively, 

there are  m n o  number of possible field evolutions. The overall probability of the particle existing at a point x is the sum of 

probabilities of all  m n o  number of possible field evolutions. Similarly, the overall probability of the particle having 

momentum p is also determined. Then the Gerchberg Saxton algorithm is used to retrieve the field. To increase accuracy of the 

method, one needs to increase the number of segments the range over which the excitation in the field, i.e., particle A is non-zero. 

 

Similarly, for a particle self-interacting with itself in the gravitational field, we space into infinite infinitesimally small segments. 

The part of the field    of the particle A in the i
th

 segment at 0 0( , )i x t will be accelerated by the above mentioned rules, but values of 

 , relg x M will  depend on     The part of the field in i
th

 segment will be accelerated by  , relg x M whose values depend on x 

http://www.tsijournals.com/
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(the distance and separation) and the mass equivalence eigen values at time 
0

x
t

c
 . 

When x=0, 

We know that the part of the field in i
th

 segment will interact with itself, i.e., it will be accelerated towards itself, thus,      can be 

ignored in         
0

ˆlim ,group
dt

T g x d x v d x x t x y dxdy  



      . Therefore, it will be equal to 

   
0

ˆlim ,group
dt

T v d x x t x y dxdy 



      , when x=0 for all self-interactions FIG.2.  

 

 

 

FIG. 2 To study energy conservation due to self-interaction, let’s imagine an excitation in the field in vacuum 

 

We can see that the wave function is non-zero over the range (-4,0) at t=0. The part of the wave function at -4 will be accelerated in 

forward direction due to self-interaction. The scenario in which the part of the wave function will be accelerated the least is when 

x=0, in which it will be translated by  
0

lim group
dt

v d x


. The part of the wave function at 0 gets translated the most is when x=0, as 

in other scenario we can see it will be accelerated in the direction opposite to its motion [9]. 

 

Therefore, the particle after time interval
0

lim
dt

dt


will have a probability to exist over the range 

   4 , .group groupv d x v d x      

Since 
2

A  is non-zero over the range    4 ,group groupv d x v d x     , there    will also be non-zero over it. Since the 

wavelength of the particle does not change, we can say conservation will not be violated due to self-interactions since 

groupv
E hf h


  . 
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