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The purpose of present study is to show first time the applicability of Singh
and Gupta�s integral form of equation of state not only for the Bulk materials

but nanomaterials as well. This Equation is based on some mathematical
technique and used to analyze the temperature dependence of thermal
expansion coefficient, relative volume change and isothermal bulk modulus.
We are taking metals Ag and Au as bulk materials and fullerene (C

60
) as a

nanomaterial. There is found an excellent agreement of our calculated values
with the experimental data, which proves the validity of Singh and Gupta�s
equation of state for both bulk materials and nanomaterials on equal
potential. 2014 Trade Science Inc. - INDIA

INTRODUCTION

The Study based on the EOS at high-pressure and
high temperature is of fundamental interest because they
permit interpolation and extrapolation in to the regions
in which the experimental data are not available ad-
equately. They help in planning future high-pressure
experiments, and are also important in comparing static
high-pressure experiments with shock wave experi-
ments, in which the treatment of thermal effect is par-
ticularly important. Some high-pressure experimental
techniques are also available for high-pressure high tem-
perature study at laboratory, which are Synchrotron X-
Ray diffraction and spectroscopy, Raman scattering,
Laser heating, Brillouin scattering and Multi-anvil syn-

thesis. Understanding of metallic properties at high-pres-
sure and high temperature is a central problem of high-
pressure physics. Basically metals are structurally dis-
tinguished from non-metals by their atomic bonding and
electron availability. The free electron is lost from the
outer shell of metallic atoms are available to carry the
electricity and heat capacity.

Over the past decade, nanomaterials have been the
subject of enormous interest. These materials, notable
for their extremely small size, have the potential for wide-
ranging industrial, biomedical, and electronic applica-
tions. Nanomaterials can be metals, ceramics, polymeric
materials, or composite materials. Nanocrystalline ma-
terials with particle size of 1-100 nm are of current in-
terest because they show noble physical and chemical
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properties that may differ from those of the correspond-
ing bulk materials

In the 1985, hollow carbon nanospheres were dis-
covered. These spheres were called buckyballs or
fullerenes, in honor of architect and futurist Buckminster
Fuller, who designed a geodesic dome with geometry
similar to that found on the molecular level in
fullerenes[1].The basic C

60
 structure consists of 60 car-

bon atoms that link together to form a hollow cage-like
structure. The structure consists of 32 faces of which
20 are hexagons and 12 are pentagons. Of these, no
two pentagons share a vertex. Several physical prop-
erties such as compressibility[2], bulk modulus[3] and
Debye temperature[4] have been studied for bulk
fullerenes C

60
 but less literature is available for a single

fullerene C
60.

METHOD OF ANALYSIS

It has been noted that under the effect of tempera-
ture the product of thermal expansion coefficient and
bulk modulus remains constant[5], i.e.

TáK Constant. (1)

Where á is volume thermal expansion coefficient and
K

T
 is bulk modulus.

On differentiating equation (1) with respect to T, at con-
stant pressure, we have
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Substituting the value of equation (3) in equation (4) we
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Gruneisen parameter is basically a measurement of
anharmonicity in a crystal.Recent studies revealed that
ä

T
 changes with temperature and it must be considered

as a temperature � dependent parameter. The tempera-

ture dependence of ä
T

[6] is given by the following em-
pirical relationship

k0

TT xää   (8)

where X= (T/T
0
), T

0
 is reference temperature (room

temperature) and 0
T  is the value of Anderson Gruneisen

parameter (ä
T
) at T= T

0 
and k is new dimensionless

thermo elastic parameter, whose value is calculated by
the slope of the graph plotted between log(ä

T
) and

log(T/T
0
).

So the value of k is defined as
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Substituting equation (8) in equation (5) we get
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Integrating equation (10)
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where C is integrating constant, which can be calcu-
lated from initial condition at T=T

0 
and á = á

0
.
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Using equation (12) with (11) we have
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Rearranging we get final expression for volume ther-
mal expansion coefficient (á

T
).
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Where á
0 
is the thermal expansion coefficient at refer-

ence temperature T
0
. this equation requires only three

input parameter á
0, 

0

Tä
 and k at room temperature and

the value of á
T  

is evaluated directly as a function of
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temperature. The empirical temperature dependence of
ä

T
 is assumed then according to equation (4) at P=0,

may also rewritten as
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Integrating above equation (15), we get
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Where C is integrating constant, which can be calcu-
lated by initial conditions T=T

0
, and K=K

0
.

We get the final expression for bulk modulus K
T
 is
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The expression for the volume thermal expansion
(V/V

0
) can be obtained by making use of the following

equation
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Differentiating equation (17) with respect to tem-
perature, we get
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Integrating equation (20) we get the final expres-
sion for volume thermal expansion (V/V

0
) as follows
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The equation (21) is known as Singh and Gupta
equation of state for the volume thermal expansion.

The value of dimensionless thermoelastic param-
eter k can be estimated from the slope of the graph
plotted between logä

T
 and log T/T

0
. The values of ä

T

and 0
T  have been calculated from equation (5).

RESULTS AND DISCUSSION

The values of Thermal expansivity (á
T
), isothermal

bulk modulus (K
T
) and volume thermal expansion (V/

V
0
), at different temperatures and atmospheric pres-

sure have been calculated from equations (13, 17, 21)
respectively, for Au, Ag and fullerene. The variation of

TABLE 1 : Input parameters at room temperature. Volume
thermal expansivity á

0 
(in unit of 10-5

 
K-1), bulk modulus K­

o

(in GPa) and first derivative of bulk modulus K
0
� are taken

from as indicated in square bracket.

Metals 
á 0 (10-5

 

K-1) 
Ko 

(GPa) T
0 k K0

� 

Ag 5.76[7] 99.6[8] 6.30 
-

0.068 
6.20[9] 

Au 4.23[7] 166.6[8] 7.80 
-

0.005 
5.10[9] 

C60 1.727[11] 491[10] 122 -1.34 - 
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thermal expansivity (á
T
), bulk modulus (K

T
) and vol-

ume thermal expansion (V/V
0
) of these materials are

shown in Figure (1-9), together with available experi-
mental values[11, 12] for the sake of comparison of our
results. It is observed from the graphs that the values of
It is found in each case that our calculated values are in
close agreement with the experimental data. Thus it is
predicted here that the Singh and Gupta�s integral form

of equation of state which is used to determine the elas-
tic properities of solids under the effect of temperature,
is not only applicable for bulk materials but
nanomaterials also with equal footing.
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