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ABSTRACT

Thermodynamic stability of enzyme catalyzed reactions has been investigated using the
recently proposed thermodynamic Lyapunov function. The thermodynamic Lyapunov
function is the magnitude of excess rate of entropy production and hence is a positive definite
quantity. In the present study we have investigated the stability of Michaelis-Menten kinetics
and its associate phenomena such as cooperative activation, inhibition and catalytic poisoning.
The present study reveals the domains of thermodynamic stability under the constantly acting
small disturbances and asymptotic stability of the investigated reactions.
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INTRODUCTION

Lyapunov’s direct method of stability of motion" * involves the identification of
suitable sign definite Lyapunov function and then determines its total time derivative. The
sign and behaviour of this time derivative of the Lyapunov function then tell us whether the
dynamic system is stable, asymptotically stable, stable under constantly acting small
disturbances or unstable™ *. Since long, it has been felt that the thermodynamic stability
consideration should follow the same line but remained eluded so far. In view of this, one of
us”’ recently proposed the excess rate of entropy production as a thermodynamic Lyapunov
function, L . namely,

L =

where O';] is the entropy source strength along the real trajectory whose stability is being

>0 (1)

0
o, ~a,

investigated and o is that along the perturbed one. As per the dictates, the second law of

thermodynamics the entropy source strength is a positive definite quantity that appears in
Clausius-Duhem inequality®'’, namely,

* Author to whom correspondence to be made
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p% +divJ, =0, 20 (2

where p is the mass density, s is the per unit mass entropy, J is the entropy flux density,

o, is the rate of entropy source strength and ¢ is time. The terms involved in eq.(2) are

position and time dependent but for the sake of brevity this dependence has not been shown.
Further, the coordinates of perturbation, &, are defined as

a =\, —yﬂ > 0, ‘ym ¥i,|= x = constant k3
where
a; (’u) =g (’0) T Yioe }’iﬂ (‘o) = yioo -(4)
and hence the equation of unperturbed motion are,

a’'=0, ap=0 AT

In egs.(3) and (4) y,’s are the thermodynamic coordinates of the process under investigation
and they are provided by the appropriate Gibbs relation and expression of entropy source
strength.

The differential equations of perturbed motion in thermodynamic perturbation space read

as,

da;

?zfi(l.a],az, ...... ) (T#10.3,.000h) ..(6)
The domain of thermodynamic perturbation space is determined by,

tEf L2 & S &> wlh)

where & is a sufficiently small positive number. The functional dependence of entropy
source strength within the thermodynamic perturbation space, that is on a;’s, are now
obtained as,

g, =0, (1,8, 505:40 ) > 0 (8)

o’ =a,(1,0,0.,.....,0)>0 (9)

Correspondingly, the functional dependence of the thermodynamic Lyapunov function, L_,
are obtained as,
L =L, (.0, @ty )>0  for 124, ..(10)
L =L(t00,....,0)=0 for t21, (1)

that is L, has a strict minimum at the origin.
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On applying Lyapunov’s second method'? the asymptotic stability is guaranteed if the

result is,

dL. oL oL

_‘=_‘+ Wk " S._ 0 o

e 12)
i

where f is a positive number that vanishes only at the origin, that is at
a, = 0 (i =12, s ,n). In addition if every 0L, /@a; is finite then the stability under the

constantly acting small disturbances is guaranteed by Malkin’s theorem™ *. On the other hand
instead of eq.(12) if one obtains,

- dL oL oL,
L =—=—2« —=f. <0 s(13
A ! ot 6a f (13)

the unperturbed motion is said to be stable. However, if the result is L > 0 then the
unperturbed motion is unstable.

The above mathematical description reveals that our method involves the act of
perturbation (bringing in of @, ’s) and then observing the response of the system (determining
the sign of L ). We stress that this very element was missing in the Glansdorff-Prigogine
theory of stability of local equilibrium states'' and was first pointed out by Lavenda'’ and one
of us™’. In view of this the above framework has been christened as comprehensive
thermodynamic theory of stability of irreversible processes (CTTSIP) e

THERMODYNAMIC SPACE

The first task in stability considerations is to identify the appropriate thermodynamic
space through corresponding Gibbs relation and the expression of rate of entropy production.

The traditional Gibbs relation is appropriate one for a spatially uniform closed system
10, 13-15

undergoing chemical conversions at finite rates read as R
V Z d
g:rfl dU T_] d T ﬂl\ (14)
di dr

where S is the entropy, 7" is the temperature, p is the pressure, U/ is the internal energy.

V' is the volume, , is the chemical potential per mole of the component k and n, 's are

the mole numbers. Notice that the first two terms on the right-hand-side of eq.(14) are mainly
due to the thermal and mechanical interactions of the system with its surrounding and the last
term originates due to the occurrence of a chemical reaction at a finite rate, that is chemical
interactions. Further if the irreversibility is only due to a single chemical reaction occurring at
a finite rate, then from Dalton’s law'* we have,
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dn, =v, d& gk
where & is the extent of advancement of the chemical reaction and | 's are the

stoichiometric coefficients and by convention are taken positive for products and negative for
reactants. Further, the standard expression for chemical affinity"”, 4, is,

ﬂ=—z;1kvk >0 +(16)
k
On substitution of eqs.(15) and (16) into eq.(14) gives
ds 4 dU o dV g d€
— =T — 4 pl —+AT' 2 (17
dr a Pyt ()

We recall that eq.(17) is the De Donderian equation'’. Thus, in the absence of irreversibility
in thermal and mechanical interactions, the rate of entropy production due to a single
chemical reaction reads as,

A dg
L omm s o) ..(18
ST (18)
where
PN J.O’SdV ..(19)

-
Notice that eq.(18) conforms to the dictates of second law of thermodynamics that is the rate
of entropy production is never a negative quantity'®.

Previously using above method of CTTSIP we have investigated the thermodynamic
stability of some elementary chemical reactions'”'®, stress relaxation in viscoelastic fluids'”*’
and rigid body heat conduction’. In this paper we present the study of thermodynamic
stability of enzyme catalyzed reaction, cooperative phenomenon associate with it and
catalytic reversible and irreversible inhibitions.

MICHAELIS-MENTEN ENZYME KINETICS

The Michaelis-Menten kinetic scheme’"** is the simplest mechanism of enzyme

catalyzed reactions. This involves two steps. In the first step enzyme, E, reacts with the
substrate, S, to form intermediate complex, ES, which in the second step gets converted to

product P regenerating E, namely:
k

1
(1.h, E+S k# ES
1

Kk,
(1.1) ES ——» P+ E

where k, and k_, are the rate constants of forward and reverse reaction respectively of (1.1),
k, is the rate constant of reaction (1.I1). In enzyme catalyzed reactions the molar
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concentration of substrate usually is larger in excess over that of the enzyme and hence, only
a very small proportion of the substrate gets bound to the enzyme. We recall that the ratio of
concentration of enzyme to substrate is normally in the range’’ of 107 to 10°. It is an
observed fact that after a lapse of a very short induction period the concentration of complex
ES achieves a steady state’ . To be specific the condition of attainment of the steady state
as per van’t Hoff **' is k , << k,. Further as enzyme gets regenerated in step 2, its
concentration during the course of reaction remains stringently constant. That is the rate of
change of the concentration of enzyme as well as intermediate complex remains practically
zero. Thus, from chemical kinetics™** the rate equations are,

0
dditl = kneng —k_nds >0 ...(20)
d&; 0
—::k., _.,>0 2]
5 2MEs (21)

. . 0
where n,'s are the mole numbers of chemical species and & and &) are the extent of

advancement of reactions (1.1) and (1.11), respectively. Superscript * indicates the quantities
on unperturbed trajectory. Moreover, from the relevant stoichiometry and steady state

approximation, the rate of change of concentrations of S, E. ES and P read as,

dn’
‘:TS = —kngng +k_yngs <0 -(22)
d”(t)‘ 0.0 0 0
d”rt_-)‘s 0.0 0 0
T kingng —k_\npq —kyngg =0 ..(24)
0
d:f = kyg > 0 (25)

From egs.(20)-(25), we have following identities:

4 _df i _dn -
de dr’ de dr

As the concentrations of enzyme and the intermediate complex are very small

compared to that of substrate, the rate involving former species would be highly sensitive to

even small disturbances in their concentrations making the steady state to instantly break

down. Therefore, we have investigated the thermodynamic stability when mole numbers of

enzyme and the intermediate complex are perturbed from their steady state values. Further in

view of the complex nature of enzyme catalyzed reaction, we have not considered the cases

of simultaneous perturbation in mole numbers of E and ES, which also help us in
considerably pruning down the length of this paper.
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Thermodynamic stability when mole number of enzyme, E, is perturbed
First consider the case when concentration of E is perturbed by sufficiently small
amount say, on;; and that is,

5 =]§ —g“]>0. Sny =]nE -ngl >0 27
The rate equations on perturbed trajectory would read as,

d

% =kngnd —k_nd >0 (28)

dny; 0 0 0

‘d—’ — —fc]nEnS 2 k‘{nﬁs + kznl_:s %0 (29)
Now on subtracting eqs.(20) and (23) respectively from eqgs.(28) and (29), we obtain,

d §| _‘fo

0
d|"E _”E‘ _d(ong)
dr dr
Notice that eq.(21) remains valid both on unperturbed and perturbed trajectories as o0&, =0
and hence identically we have,

d(§|| ‘53) -
dr -

.(32)

Notice that the rate eqs.(30) and (31) vanish only on the unperturbed (real) trajectory.

Further in fairly dilute solutions the expression for chemical affinities on unperturbed
trajectory is given by chemical thermodynamic™'" as,

0.0
i -
0
e

51 33)

A} = A7 +RTIn

0

I
A2 AT FRT o5 .(34)
p N

where ﬁlg and ﬂf: are the chemical affinities of reactions (1.1) and (1.11), respectively and
ﬂlgand ﬂf,a are the corresponding standard state chemical affinities. Using steady state

condition of eq.(23), /’1:) is further simplified as,



Int. J. Chem. Sci. : 2(4), 2004 501

k_, +k,
A =42 + RTIn[%]= constant ..(35)
I

However, since k, >> k_| ( van’t Hoff condition of steady state) eq.(35) reduces to

k,
A = AP + RTln[k—“)=con5tam .{36)

1

Eq.(36) thus confirms the constant value of the chemical affinity in steady state''. In view of
the assumption that the concentration of enzyme alone is perturbed by a sufficiently small
amount the expression for the chemical affinity on perturbed trajectory is obtained as,

0 (} 0
A =ﬁf+RTln[nS:E]=ﬂ,‘?+RTln h [1i‘5"'3 ]} .(37)
Ngs e g
nl 0 i
Ay = A8 +RT1n[ ] AC + RTIn{ S (1 5%] (38)
Mt Yiphig L5

Further from egs.(33), (34), (37) and (38) the small change in chemical affinities due to
perturbation in mole numbers of E, obtain as,

)
A - A = RTE .(39)
nl;
ony
Ay - Ay =—-RT—~ ..(40)
g
The local time derivatives of chemical affinities, 4, and 4, read as,
0 i
O _ 2| 42 +rrin| %2 ||=0 (41)
o o k,
0 [ 0 0
i _ 2| 42 + RTIn| s e 0 --(42)
o o ,nu.r,v{J n][,] ot

The results of eq.(41) follaws from eq.(35) and that of eq.(42) is based on the fact that
0/61 remain identically zero as ﬂf = ﬂf (7, p) and from steady state approximation,

6n?/6t —an /5! 0. Further as on the real trajectory (n, —n;) (5—50):0 that

provides the following identities, namely,

og’ _dg  omp _dmy
ot de ’ & dt

, ete. ..(43)
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That is the local time derivative of mole number of reacting species is equal to its total time
derivative.

ln the present case there we have two chemical reactions for which De Donderian
equation"” reads as,

dS _1dU pdv A dE 1, dE

= +
de Tdte T dt T dt T dt
and hence the rate of entropy production on unperturbed trajectory in this case, reads as,

30 —i:)ﬁ.}.ﬁﬁ)()

...(44)

= ...(45)
78 Pl Laghw gy
and that on the perturbed one reads as,
—ﬂ%+&.___d§'l >0 ...(46)

SUr dt . Tt
In eq.(1) we have local level thermodynamic Lyapunov function, L_, but in view of egs.(19),
(45) and (46) the global level thermodynamic Lyapunov function, Lg, in the present case is
obtained as,

L = |E 2"’ A 4y ﬂdﬂ_iﬂi_ﬁdén 50
' T dr T dt E T dr

This on further simplification gives,

i}’d(Bg,)Jriﬂd(Sé,l)Jr(ﬂ: - A7) ¢g° +(ﬂn - Ah) dgo

T dr T dt T dr T dr
A=A A=A
( ' ‘)d(8§1)+( i |1)d(5§”) sifh .(47T)
T dt T dr
Further, from eqs.(26), (39) and (40), we have,
0
(A -A)agp (An-Ai)agy i
T dr & dr
( A)a(sg) (A=A d(s5)
Thus using eq.(48) and ignoring py T 4 as

|/’I. —ﬂ.”| << 4 and |ﬂ1, - ﬂ,‘f| << A4 eq.(47) reduces 10"

" Recall that in the expression of affinities 07, appears in the logarithmic term. Thus, the sufficiently

small magnitude of 07, will have much more smaller effecton A4 .
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= %'”ﬂ%i) “jp' knidn. >0 ...(49)

From eq.(49) Lg has the following functional dependence:
Lo =Ly (2 8n: ) >0 ..(50)

The total time derivative of Lg in view of eq.(50) reads as,
Ia i, By O 4(07) (51)

de o d(Sng) dt
Note that the form of egs.(50) and (51) remain identically same for all perturbation
coordinates appear later in this paper. From eqs.(22), (25). (26) and (42) the local time

derivative of Lg is obtained as,
oLs _ A ong sy 5 A L ong,
ot T o T ar
The equalities of eq.(43) have been used in obtaining eq.(52). The gradient of Lyapunov

ﬂ“
e =— ?‘k,k:ngsc‘in}; <0 ..(52)

function, Lg, reads as,

al
OLs = —&—kg?é’ > 0 and finite w493}
a(én.) 1

Thus from eqgs.(31) and (53), we obtain,
ory d(dnmg) A
a(on.) & T
Using eqs.(51)-(54) the total time derivative of Lg gets expressed as,

(k) omg <0 (54)

a0
ddé =_i;'_k, [klnﬂs +k (n‘,) ]5n, ~B <0 +(85)

Thus the asymptotic stability and stability under constantly acting small disturbances is
guaranteed.

Thermodynamic stability when mole number of complex, ES, is perturbed

In this case, we have,

> 0, 8 =[e-£>0 ..(56)

- 1]
Oy = |”[€S = Pes

where n} is the mole number of ES on unperturbed trajectory and ng¢ that on perturbed
one. Thus the rate equations on the perturbed trajectory read as,
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d
% = knond —k_ngs >0 o€ 1)
!
dé
d_;' = kyngg > 0 ..(58)
dny
:;;5 = —kyngng +k_ s + kyngs # 0 9

and those on unperturbed trajectory are given by eqs.(20), (21) and (24). On subtracting
€qs.(20), (21) and (24) respectively from eqs.(57), (58) and (59), we obtain,

d(s
% =—k_Ongg <0 ...(60)
d(s

(df”) = kySnpg >0 ~{(61)
ﬁ":ﬁ_s) = —(k_, +k)Snes <0 -(62)

The expression for chemical affinities, ,ﬂ,o and ﬂﬁ of unperturbed state are given by
eqs.(33) and (34). However, on perturbed trajectory, we have,

n”no- n’n .()'n.‘, 71
A = AP +RTIn| =2E |= 4% + RT In{ =5 | 14— ..(63)

Mg Mgs

Hgg

0
Ay = AT +RT1n( 'Z}ES()]:A‘? +RT|n{ JEs ['ii’%@}} (64)

Lo Fip g Mgs
Further, from eqgs.(33), (34), (63), (64) and identity of eq.(26) we obtain eq.(48), which
remains valid in this case too. Thus on the line of eq.(47) and help of eq.(48) we obtain

following operative expression for Lg, namely:

0 0
L = -ﬂ—‘k_, +%k2 ongg >0 ...(65)
From eqs.(41), (42) and (65), the local time derivative of Lg is obtained as,
0 0 o|.a° : 0
6_[.,;:_('5"_,?1_,&]4_&’(2 5nFS=k_3M:_ Z&Aaﬁ<0 ..(66)
a o T ST o ny Ot
since /’I,“ is constant. Similarly from eq.(65) the gradient of Lyapunov function, Lg, reads as,
o 0 0
.. - —’z—'kvl +ﬂk., >0 and finite ..(67)
d(dns) T T -
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Thus from eqs.(62) and (67), we obtain,

o d{Ongg g 1
Tl LR A W, 8| R T ..(68)
d(dngg)  dt T : R
From eqs.(66) and (67) the expression ford £, /d7, is obtained as,
dzg (k) A A )
‘&?:“R n Mgs + —?lk-l +%k2 (k) +ky)pOngg <= <0 ..(69)

Thus the asymptotic stability and stability under constantly acting small disturbances is
guaranteed.

COOPERATIVE PHENONMENON IN ENZYME REACTION

g . 23
The cooperative phenomenon’** occurs when enzyme possesses more than one

binding sites for substrate molecules. In this event a simple mechanism that operates is a four
steps one. Both ES and ES, the intermediate complexes, produce the product P. This
mechanism reads as,
ki
@Iy S+E k# ES
-1
Ky
(2.0 "ES———2=p B+ P
k3
(2.1 S+ES =— ES,

-3

k
@2.1V) ES;, —2» ES+P

where ES, is the intermediate complex composed of one enzyme molecule bound with two

substrate molecules. If this intermediate complex ES, remains inactive then the reaction step
(2.1V) is absent and the cooperative phenomenon leads to a noncompetitive inhibition™".

Notice that above model is the extension of Michaelis-Menten mechanism. Herein
too the rate equations and the expressions for affinities on unperturbed trajectory for reaction
steps (2.1) and (2.11) remain identically the same as in the preceding section (c.f. eqgs.(20),
(21), (33) and (34)). Rate equations for steps (2.111) and (2.1V) on the unperturbed trajectory
read as,

d 0

jm = kyndnls —k_ynds >0 ‘ ..(70)
1 ‘ i
0

déiv = kgl >0 (71

ds
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Note that in the case of inhibition reaction step (2.1V) is absent. On applying steady state
approximation to the species E, ES and ES, the following rate expressions for cooperative
phenomenon, are obtained,

dnd
d”gs_k &) Rl g s0.b 0 [ R

ik s — k_yngs = kyngs — kyndng +k yngs, +kyngg =0 ~(73)
d"m,

- = kyngngs — k 3”[5 -k n,.; =0 .(74)
dny

_d! = kgl +Ic4n,g >0 &K735)

and eq.(23) gives the steady state condition for enzyme, E. This is also implied by the validity
of eqs.(73) and (74). However, in case of inhibition we have

dny

B = kngng ~k_ nps = kynl — kyndnps +k773nﬂs: =0 s 70}
dny

dL!S = kyngngs — k Jngsz >0 -(77)

as equilibrium state can not be assumed for ES, . Notice that corresponding to eqs.(76) and
(77) we have,

0
gg;_. = —kyngng +k_ngs +kynps <0 ~{78)

That is no steady state is possible for the enzyme in case of inhibition. Further from egs.(73),
(73) and (76) we also have,

ey _déy dén _déy (79)
di dr ’ dr di
( 0
dns d”g , d"ﬁg ks _dnrf i dnEsz =0 (80)

Because in the case of cooperative phenomenon, eqs.(23) and (29) hold and hence the
stability aspects for this case remains the same as that in section 3 (c.f. eq.(55)). However, in
the case of inhibition the rate of eq.(23) is not zero (i.e. eq.(78) in the present section) and
hence, we reconsider this case in this section again. Besides, we also discuss the case of the
thermodynamic stability when the mole numbers of intermediate complexes ES and ES, are

perturbed.
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Thermodynamic stability when mole number of E is perturbed

As mention above we consider only a case of inhibition. In this case the expression
for Lyapunov function is given by eq. (49). The local time derivative of Ly however is

obtained as,
oL, 0\ on! 4 3
% _ i | 142 |25 .1 e Sn, <0 .(81)
o RT ) ot n, ) ot

Ll 8
o dr ot dr

The gradient of L in this case remains identically same as given in eq.(53). Thus using

€qs.(53), (54) and (81) the total time derivative of Lyapunov function, L, is obtained as,

d[s ﬂ" 5 ﬁo dnu nn dn(f
S =Rk k (n)) —| 1+ |—+| = |—=¢6n. - <0 .(82
dr '{RT () [ RTJ ar o\ ne ) ar [0 " 53

Thus once again the asymptotic stability and stability under constantly acting small
disturbances is guaranteed in the case of noncompetitive inhibition.

Thermodynamic stability when mole number of ES is perturbed

In this case the rate equations on perturbed trajectory, read as,
—_— ]@Hg nE-S i k_;nlnis‘ > 0 ...(83)

dn
ES _ g ,,0,0 0 0 0
= kyngng —k_ngs — kyng — kyngnes +k sngs +kyngg # 0 ...(84)

whereas in the case of inhibition eq.(83) holds on perturbed trajectory but instead of eq.(84)
there we have,

dngg
dr
The expressions ford&, /df and d&;; /dr are that given in egs.(28) and (29) respectively in
both the cases. On subtraction of eqs.(70) and (73) from eqs.(83), and (84), we obtain,

= kyngng — k_ ngs — kyngs — kyngngs + k—sngs: #0 -(85)

d(o.
—(E“fi) = kyngdngs > 0 ..(86)
d(s

!

But the rate d&, /dr remains identically same on both; unperturbed and perturbed
'trajectories and hence, we have,



508 Chandrakant S. Burande and Anil A. Bhalekar : Thermodynamic Stability of ..

d(¢w)

dr -
The expressions on unperturbed trajectory of chemical affinities of reaction steps (2.111) and

(2.1V), read as,

={) .(88)

”()n(]

A —ﬂln +RTIn OH ...(89)
PEs,
n,

A = A2 +RTln{ L ] .(90)
Hetes

where ﬁﬁ and A, are the chemical affinity of standard state of reaction steps (2.111) and

(2.1V). Further in case of steady state of ES,, eq.(89) reduces to

ﬂﬁl = ﬁ,ﬁ + RT ln(k"k—%k‘) = constant (91)
3

Notice that eq.(91) is valid only for cooperative mechanism. On the perturbed trajectory the
chemical affinities are given by following expressions:

nin kyngn; onyq

A = A3 + RTIn| 25768 | = ppin{ 20576S | |4 2768 (92)
”lesz kv—SHIES: R
HQ- no.\ 8" E

Ay = A5 + RTIn| 2 |= A3 + RTIn{ —= [u U‘?SJ (93)
Ap g phgs Mgs

The expressions for A4, Ay, 4 and A, are still given by eqs.(33), (34), (63) and (64).
Further from (89), (90), (92) and (93), we have,

N
Ay — A = RT 0“ ..(94)
Mg
O -
Ay _-ﬂl[{f =—RT ”I"H .(95)
Mg

The local time derivative of 4, and ,?II“V are obtained from eqs.(89) and (90), read as,

g ongs
aﬁ[“ - RT %5115 N | ES 1.0 ..(96)
ot ng ot Nis, ot
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0 nq 0
Ay - Ly AL +RTIn 0;.55 = —5[;;-6’7—‘ <0 «X97)
& o Np g np Ot

However, in the case of cooperative phenomenon the local derivative of }I,(:I is obtained
from eq.(91) as,
0 0 k y+k
i} =—| A% +RTIn| =—2 ||=0 ..(98)
ot ot k,

On the lines of eqs.(47)-(49) the thermodynamic Lyapunov function, £, for both
cooperative and inhibition mechanism gets expressed as,

0 0
L = S’: -ﬂ?’kv|+%kz+ﬂ”'kn2 ongg >0 ...(99)
To obtain eq.(99) we used the facts that
0 N 0
(ﬂm - Ay ) dé, & (ﬂ[\ - Ay ) dc.,\ -0 .(100)

T dt T dr

in case of cooperative phenomenon and

(= 2)ag (=)o | (a=h)asy

T dt T dr T dr

for case of inhibition. From eq.(99) the local derivative of £ for cooperative mechanism
obtain as,

a ony)

s el ’z ok S T T A 2 5nFs< 0 .(102)

ot np Ol z a

and that in case of inhibition we obtained.

0 k k
a_fs=R[2k3{1+’:'}[]+k3"" &+ )F"' sl

=0 ..(101)

or nis, ny or
0 0
k, |onp
—R| ky PIELN += P Snls ..(103)
RT n; ot ¥
The gradient of Lypunov function, L, for both cooperative and inhibition mechanism reads
as,
U] 0 0
0L | Aig v Mg 2 Aug 0l 0 and finite (104)
o(dn) & R A
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and thus from eq.(87) and (104), we have,

0L d(anliS):__ilﬂk +i|r: ﬁmk
d(ony) df g
Using eqs.(102) and (105) the total time derivative of L for cooperative mechanism is

obtained as,

o|(k, +k, + kil )Sng <0 ..(105)

a5 _ ﬁ' k_|+ﬁ”k +ﬁ“'k (k +k, +kn(\)c>n,h
dr T
0
kRO Al g ..(106)
"y & | Topdl )

and in the case of inhibition we obtained from eqs.(103) amd (I04) as,

0
EE'# =—R ﬁl k,+— A ka"::] (k-l +k, +k‘n2)+k ﬂ” - (:Hh Ongg
RT " 2 TR RT x

dr BT nl
-R iﬂ_k_l_ _(k +k") knln —| 2k, ﬂ:l k”s on, B
_RTnL-‘S n . RT n ot =
A , (K +k,)| ong
Rk |1+ |4+ 242" ——2L—L§ < - 0 (107
{ [ RT] v s herp Bt 2 s P

since  nmps << np, k_, << ky, on} [ot=dng /dt < 0. Thus in both the cases of

cooperative and inhibition mechanism of enzyme catalyzed reactions the asymptotic stability
and the stability under constantly acting small disturbances of real trajectory is guaranteed

when mole number of intermediate complex ES is perturbed.
Thermodynamic stability when mole number of ES,; is perturbed

We consider the perturbation in mole numbers of dual bounded substrate-enzyme
complex, ES, by small amount say, dngg and then we have,

Ontes, = |Pes, —1iks, |>0,  8& =lg-&| >0 ..(108)
In this case the rate equations on perturbed trajectory, read as,
d
%I‘ = J"S”ES —k_yngg, >0 -.(109)
p :
d
dow _ kyngs, >0 ..(110)

dt
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dngs.
ar = kyngngs — k aMgs, —kyngg #0

~(111)

Notice that eq.(109) is valid in both cooperative and inhibition mechanisms, however for later
case instead of eq.(110) we have,

Vs, — ko — k 0
Ond Nee #
dI 315 Mg =3"ES;

L(112)
On subtracting eqs.(70), (71) and (74) respectively from eqs.(109), (110) and (111) we obtain
d(o
(%) _ —k 6ngg <0 L(113)
dr d
d(o.
(%) _ kydngg >0 ~(114)
dt :
d{on,.
%—)=—(k4 +ky)Ons <0 (115)
/ 2
In case of inhibition eq.(115) reduces to
d(dng
%l) = —k_yOngs, <0 (116)

Further the terms d(0&,)/dt=0and d(6&,)/df =0 as the rates of & and &, both on

perturbed and unperturbed trajectory remain identically the same. The expression for
chemical affinities on perturbed trajectory read as,

non? n(?nq O Hi-c X
Ay = A5 +RTIn| 255 | = 28 4 RTIn{ =58 | | 4 —ES (117)
Pes, Mg, Mg,
0
n Nes ong
=A%+ RTln[ — J A% + RTIn{——=| 12— A118)
Mpligs Mp Mg Mgs,

Further, from eqs.(89), (90), (117) and (118) we obtain eq.(99) which too valid in the case of
cooperative mechanism and thus Lyapunov function obtained as,

=|Z —Z ﬂlll If ﬁ&/ k
S

Snyg, >0 .(119)

and in case of inhibition instead of eq.(99), we have,
(ﬁm - ﬁ::l ) dtfﬂ RanliSj 0
, ci:m i s = (kyninls —k s, ) -.(120)
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With help of eq.(120) we obtained following Lyapunov function:

ﬂ[] R
L =[Z, - 23| =k, %JFT(WL’ b —k_snls, Jones, >0 L(121)
ES>
The local time derivative of Lyapunov function, £, for cooperative phenomenon, obtain as,
oL k, on k, on,
S =R2L3§n, =-R=+—Lén, <0 ) .
ot n ot 5 n, ot = (122)
and that in case of inhibition, we have,
3) On0 | ond 1 ony. ;
WL o 0 | B ST N .(123)
ot Hgs. nl o ). Ot 8
In case of cooperative mechanism the gradient of Lyapunov function, L obtain as,
a . ] 0
B T —Eﬂ'—k4+ik > 0 and finite ..(124)
ooms,) | T T
and that in case of inhibition, we have,
0L . .
9 _Awyp 50 and finite (125)

6(511[;52 )
Thus from egs.(114) and (123) for cooperative mechanism, we have,
0L d(é‘n‘isz ) . ﬁm R /qlu\ k,
6(5"552 ) de iy
and from eqs.(115) and (124) for inhibition, we obtain,
oL d (5'71-:53 )
6(5"i552 ) dr

(k. +k,)ong, <0 ..(126)

0
=_%(/f_3)2 Sy, <0 .(127)

Using eqs.(122) and (126) the total time derivative of Lyapunov function, L, for cooperative
mechanism thus gets expressed as,

0 0
dﬁ=_{_ﬂk_3 +ﬂk4 (ky+k)+ b (k nes +kyngs, )} n, <= <0 ..(128)
dr " ¥ n,

and that in case of inhibition mechanism, we obtained from eqs.(123) and (127) as

0 0.0 0 an‘f_
d_[s_:_R{%(k_g)z [l(nnts+k_3][%zi:__;_%J}6 s, <~ <0..(129)

dr Pgs, Pigs,

Thus in both cases of enzyme catalyzed reaction, asymptotic stability and the stability under
constantly acting small disturbances is guaranteed.
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CATALYTIC INHIBITION BY FOREIGN MATERIAL

In case of competitive inhibition inhibitor directly binds to enzyme molecule and
form inactive enzyme-inhibitor complex. Inhibitor molecules may be a foreign species or
reactant or product or substrate molecules. In preceding section we have considered the
reversible inhibition by substrate molecules. In the present section we discuss inhibition by
foreign material, say X. The reaction scheme for catalytic inhibition mechanism®, namely:

ky
35 E+S = ES
&)
ks
(3.0) ES ——» P+ E

k3
3

This type of mechanism is known as reversible competitive inhibition”. If the
reaction step (3.111) is irreversible (or reverse rate is insignificant), the above inhibition leads
to irreversible inhibition™ (catalytic poisoning). In this case, the effective concentration of
enzyme no more remains time independent.

The rate equations for reaction steps (3.1) and (3.11) are given by eqs.(20) and (21).
However, the rate equation for step (3.111), reads as,

0
djm =k‘”ﬂ”‘f\l< _k-sngx > 0 ..(130)
_! ;

That is we have two cases of reversible inhibition: one corresponds tb d{ﬁ, /dt =0, in the

event of chemical equilibrium for reaction (3.111) and other d&p, /dt > 0, that is for chemical
reaction (3.111) is not in equilibrium but proceeding at a finite rate towards right side.
However, in case of catalytic poisoning eq.(130) reduces to —
df”
2 = kg > 0 L(131)
de o
as no reverse reaction occurs appreciably. The rates of change of concentrations oi substrate,

complex and product remain identically same as in preceding section. The rate of change of
concentration of E, X and EX, however, read as,

(1]

b0+ o oy Kyl sy -032)
, , :

dn’

X okl 5 0 RE
!
0

dngy e k;nﬁnﬁ —k_3”gx >0 ...(134)

The steady state equation of intermediate complex ES is given by eq.(24). Further from
steady state approximation and relevant aspects of stiochiometry we have,
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&) _déi  dmp_dny _drpy (35
dt dt ds dt dr

Notice that in the present case, on perturbed trajectory eq.(59) holds and hence the
relevant aspects of thermodynamic stability when mole number of ES is perturbed remains
identically same described in last section. However, in this case the inhibitor being other than
the substrate and hence the rate of change of concentration of enzyme gets modified. This
case is discussed in the following subsections.

Thermodynamic stability when mole number of E is perturbed

Let us consider that the mole number of E is perturbed by small amount say ;. . For this

case the relevant expression foron is given by eq.(27). The rate equations on perturbed
trajectory in case of reversible inhibition, read as,

dg
7”' = kyngny —k_yngy >0 ..(136)
dny. 0 0 0 0 0
W = —kyngng +k_\ngg + kyngg — kyngng +k_3npy w1 37)
'3
and that in case of irreversible inhibition, read as,
déy, 0
—— =k.n-n ..(138)
dt 3y (
ddi = —kynng +k_yngs + kyngs = ksngn ~{133)
’ :
On subtracting eqs.(131) and (132) from eqs.(136) and (137), we obtain,
d(o
d(%w) _ kyongny >0 .(140)
dr
d(on
(d?l‘)z—(k|n§+k3n§)5nﬁ <0 (141

Eqs.(140) and (141) valid for both the cases of inhibition. The expression for chemical

affinity, }IH, , reads as,

0
Ry

720
Ay = Ay +RT1n[ E "Jz 0 (142)
The vanishing of ﬁﬂ, corresponds to chemical equilibrium for the reaction (3.111). The
expression for /'4,0 and ﬁﬂ are given by egs.(33) and (34) of section 3. Further the

expression of ﬂﬁ, on perturbed trajectory, reads as,
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n npny on
Ay = A5 +RTIn| £ | = Al + RT In{ =% | 12 —F ..(143)
Mex PEx L5
The local time derivative of chemical affinity, ﬁﬁ, , in both cases of inhibition, reads as,
o 4
-/qlll = RT Ln+_lT +0L é.’&., <0 (144)
ot ng ny  mgx ) Of

Further, from eqs.(142) and (141) and using eq.(48), we obtain,

Sng 4% (Au—An) del
R—E =M = M £0 ...(145
ny drt i dr (49
In this case too the validity of eq.(48) can be easily demonstrated using eqs.(39), (40) and
(135). Thus in view of eq.(145) the expression of Lyapunov function, Lg, for both the case

of inhibition is obtained as,

A Ay R A&y
= —T'—k,n§+ ?[" kymy + ==k

ra Snp >0 ..(146)

ny
However, in case of equilibrium of (3.111) the expression for L is given by eq.(48). From
eq.(146) the local time derivative of L for both the cases of inhibitions, obtained as,

0 0 0
s _plp Ao 4 (A 1O g,
ot RT ot RT az ‘

0
+R[ Pex ks}[%ar—'(ﬁn#]a”"s . <0 .(147)

"E hg  hy o ey ot

and that in case of equilibrium of (3.II), we have eq.(52). The gradient of Lyapunov
function, L, for both the cases of inhibitions, reads as,

6[5 ﬁl kl 0l ﬂm k3 B s R d\ful
and that in case of equilibrium is given by eq.(53).

Thus from eqs.(141) and (148), we have,

>0 ..(148)

org  d(dng) _
o(on.) dr

0
d
_|A 1’13+ﬂ111 k, x+ R jm
”r

(ki + ke )om, <0 ..(149)

and that in case of equilibrium of (3.111) from eqs.(54) and (141), we obtain,
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oLe d(ong a°
a((s[: ) (dr“‘) i 3 e ng (kn +kyny )om. <0 .(150)
E
From eqs.(147) and (149) the total time derivative £ for both the cases of inhibition, obtain
as,
dzg A Ay | d
?= R{Ri" kyn +RTI( n“ j;” (kln;] +k3n2) onyg
E
a 0
R k[ ﬂl nq k3 ﬂlll a"x 5}7[:
RT ot RT ot ‘
My . 0
1 I 1 |0
+R( L 3+k3]{—0+7+ 5 } X on, <-pf<0 ..(151)
ny g hy of

and that for equilibrium of (3.111) we obtained from eqs.(SZ) and (150) as,

d A
d—ﬁlsz 7{ k, [kznﬁs+n§(k|ng+k3n§)]5nﬁ <-8<0 «{152)
Thus the asymptotic stability and the stability of both reversible and irreversible inhibition
mechanisms in enzyme catalyzed reaction under constantly acting small disturbances is

guaranteed

CONCLUDING REMARKS

In this paper, the systematic use of recently proposed thermodynamic Lyapunov
function, Lg, to investigate the stability of enzyme reactions has been described. This

includes Michaelis-Menten kinetics and all its possible off shoots such as cooperative
phenomenon and reversible and irreversible inhibitions. We investigated the stability against
the perturbation in mole numbers of enzyme and enzyme-substrate complexes, as the
substrate concentration always remains large in excess over the catalyst. The systems were

considered as isothermal and spatially uniform. The £g was computed using production

expression given by Gibbs relation. In all cases studied, the result is asymptotic stability and
the stability under constantly acting small disturbances. This result is particularly revealing
and confirms the immunity of enzymic reactions towards concentration perturbation leading
to extraordinary efficiency of enzymic activity in vivo.
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