

Nano Science and Nano Technology

An Indian Journal

📼 Full Paper

NSNTAIJ, 8(12), 2014 [445-453]

Thermal instability in anisotropic porous medium saturated by a nanofluid-A realistic approach

Ramesh Chand¹*, S.K.Kango², G.C.Rana³

¹Department of Mathematics, Government ARYA College Nurpur, Himachal Pradesh, (INDIA) ²Department of Mathematics, Government College Haripur (Manali), Himachal Pradesh, (INDIA) ³Department of Mathematics, Government College Nadaun, Himachal Pradesh, (INDIA) MSC: 76E06, 76Exx, 76M40, 76S05 E-mail : rameshnahan@yahoo.com

ABSTRACT

Thermal instability in a horizontal layer of nanofluid saturated by anisotropic porous medium is investigated for realistic boundary conditions. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal boundaries. The modified Darcy equation that includes the time derivative term used to model the momentum equation. A linear stability analysis based upon normal mode technique is used to study the onset of instabilities of nanofluid saturated by anisotropic porous medium. Rayliegh number on the onset of stationary convection has been derived using Galerkin method and graphs have been plotted for case of stationary convection to study the effects of the thermal anisotropy parameter, mechanical anisotropy parameter, Lewis number, modified diffusivity ratio porosity and nanoparticles Rayleigh number on stationary convection. Oscillatory convection has been ruled under certain condtion.

© 2014 Trade Science Inc. - INDIA

INTRODUCTION

The subject of thermal instability in porous medium has been studied extensively in recent years. There are many real world applications of thermal instability in porous medium for instance, in geophysics, food processing, oil reservoir modeling, petroleum industry, biomechanics, building of thermal insulations, nuclear reactors and many other areas. Theoretical and experimental results on the stability of cellular convection of a fluid layer in nonporous medium have been given by Chandrasekhar (1961). Lapwood^[16] has studied the

KEYWORDS

Thermal instability; Nanofluid; Anisotropic porous medium; Rayleigh number; Galerkin method.

convective flow in a porous medium using linearized stability theory. The Rayleigh instability of a thermal boundary layer in flow through a porous medium has been considered by Wooding^[25]. A good account of convection problems in a porous medium is given by Vafai and Hadim^[24] and Nield and Bejan^[17]. In geothermal system with a ground structure composed of many strata of different permeabilities, the overall horizontal permeability may be up to ten times as large as the vertical component. Processes such as sedimentation, compaction, frost action, and reorientation of the solid matrix are responsible for the creation of aniso-

tropic natural porous media. Anisotropy can also be a characteristic of artificial porous material like pelleting used in chemical engineering process and fiber materials used in insulating purposes.

Nanofluid is the mixture of base fluid such as water or ethylene glycol and other coolants, oil and other lubricants, bio-fluids, polymer solutions etc. with a very small amount of nanoparticles or nanofibres such as metals or metallic oxides (Cu, CuO, Al₂O₂), metal carbides (SiC), nitrides (AlN, SiN) or metals (Al, Cu) etc. having dimensions from 1 to 100 nm. It was Choi^[12] who first proposed this term "nanofluid." The convection of nanofluids based on model of Buongiorno^[2] has been studied by Nield and Kuznetsov^[18], Nield and Kuznetsov^[13,14,19-21], Kuznetsov and Nield^[13-15,19,20], Chand and Rana^[5-7,10], Chand et al.^[3,4,8,9], Chand^[3,4] and Rana et al.^[10,23] while Agarwal et al.^[1] studied the effect of anisotropy on the onset of convection in a porous layer of nanofluid. All these study based upon Buongiorno model, which incorporates the effects of Brownian motion and thermophoresis. The choice of the boundary conditions imposed in these studies on nanoparticles volume fraction is somewhat arbitrary, it could be argued that zero-flux for nanoparticles volume fraction is more realistic. Recently Nield and Kuznetsov^[22] studied the thermal instability of nanofluid in a porous medium by taking normal component of the nanoparticle flux zero at boundary which is more physically realistic. Zero-flux for nanoparticles mean one could control the value of the nanoparticle fraction at the boundary in the same way as the temperture there could be controlled.

In this paper an attempt has been made to study the thermal instability in a horizontal layer of nanofluid in an anisotropic porous medium by imposing nanoparticles flux zero at boundaries.

MATHEMATICAL FORMULATIONS OF THE PROBLEM

Consider an infinite horizontal layer of nanofluid of thickness 'd' bounded by planes z=0 and z=d, heated from below in an anisotropic porous medium of medium permeability K and porosity ε as shown in Figure 1. Fluid layer is acted upon by gravity force **g** (0, 0, - g). The normal component of the nanoparticles flux has

to vanish at an impermeable boundary and the temperature T is taken to be T_0 at z = 0 and T_1 at z = d, ($T_0 > T_1$). The reference scale for temperature and nanoparticles fraction is taken to be T_1 and ϕ_0 respectively For simplicity, Darcy's Law is assumed to be hold and the Oberbeck-Boussinesq is employed. The mathematical equations describing the physical model are based upon the following assumptions.

Heated from below Figure 1 : Geometrical configuration of the problem

Assumptions

- 1) Nanoparticles are considered spherical in shape,
- 2) No chemical reaction in a horizontal layer of fluid,
- Size of nanoparticles are small as compared to pore matrix,
- 4) Nanoparticles are spherical;
- 5) The porous medium is assumed to be possessing isotropy in the horizontal isotropy,
- 6) The fluid phase and nano particles are in thermal equilibrium state,
- Radiation heat transfer between the sides of wall is negligible when compared with other modes of the heat transfer,
- Nanoparticles are being suspended in the nanofluid using either surfactant or surface charge technology, preventing the agglomeration and deposition of these on the porous matrix.

Governing equations

According to the works of Chandrasekhar (1961), Nield and Kuznetsov^[22] and Agarwal et al.^[1], the governing equations in anisotropic porous medium are

$$\nabla \cdot \mathbf{q} = \mathbf{0},\tag{1}$$

$$0 = -\nabla \mathbf{p} + \left\{ \varphi \rho_{\mathbf{p}} + (1 - \varphi) \rho (1 - \alpha (\mathbf{T} - \mathbf{T}_{0})) \right\} \mathbf{g} - \mu \mathbf{K} \cdot \mathbf{q}, \qquad (2)$$

Aano Soience and Aano Technology Au Iudiau Jourual

where $\mathbf{q}(u, v, w)$ is the Darcy velocity vector, ρ the density of nanofluid, ρ_p density of nanoparticles, p the hydrostatic pressure, φ the volume fraction of the nanoparticles, α is the coefficient of thermal expansion, μ is viscosity and $\mathbf{K} \left(= \mathbf{K}_x^{-1} \left(\hat{i} \hat{i} + \hat{j}\hat{j}\right) + \mathbf{K}_z^{-1} \left(\hat{k}\hat{k}\right)\right)$ the anisotropic permeability tensor; where \mathbf{K}_x , denotes the permeability in x- direction and \mathbf{K}_z permeability in z- direction.

The energy equation for nanofluid is given by

$$\left(\rho c\right)_{m} \frac{\partial T}{\partial t} + \left(\rho c\right)_{r} \mathbf{q} \cdot \nabla \mathbf{T} = \mathbf{k}_{m} \nabla^{2} \mathbf{T} + \varepsilon \left(\rho c\right)_{p} \left(\mathbf{D}_{B} \nabla \phi \cdot \nabla \mathbf{T} + \frac{\mathbf{D}_{T}}{\mathbf{T}_{1}} \nabla \mathbf{T} \cdot \nabla \mathbf{T}\right)$$
(3)

where $(\rho c)_m$ is heat capacity of fluid in porous medium, $(\rho c)_p$ is heat capacity of nanoparticles and k_m is thermal conductivity.

The equation of continuity for the nanoparticles is

$$\frac{\partial \varphi}{\partial t} + \frac{1}{\varepsilon} \mathbf{q} \cdot \nabla \varphi = \mathbf{D}_{\mathrm{B}} \nabla^2 \varphi + \frac{\mathbf{D}_{\mathrm{T}}}{\mathbf{T}_{\mathrm{I}}} \nabla^2 \mathbf{T}, \qquad (4)$$

where D_B is the Brownian diffusion coefficient, given by Einstein-Stokes equation, D_T is the thermoporetic diffusion coefficient of the nanoparticles and ε is porosity in horizontal plane.

We assume that the temperature is constant and nanoparticles flux is zero on the boundaries. Thus boundary conditions^[22] are

w = 0,
$$T = T_{0}$$
, $D_{B} \frac{\partial \varphi}{\partial z} + \frac{D_{T}}{T_{1}} \frac{\partial T}{\partial z} = 0$ at $z = 0$ and
w = 0, $T = T_{0}$, $D_{B} \frac{\partial \varphi}{\partial z} + \frac{D_{T}}{T_{1}} \frac{\partial T}{\partial z} = 0$ at $z = d$. (5)

We introduce non-dimensional variables as

$$(\mathbf{x}',\mathbf{y}',\mathbf{z}',) = \left(\frac{\mathbf{x},\mathbf{y},\mathbf{z}}{\mathbf{d}}\right), (\mathbf{u}',\mathbf{v}',\mathbf{w}',) = \left(\frac{\mathbf{u},\mathbf{v},\mathbf{w}}{\kappa_{\mathrm{Tz}}}\right) \mathbf{d}, \ \mathbf{t}' = \frac{\mathbf{t}\kappa_{\mathrm{Tz}}}{\sigma \mathbf{d}^2},$$
$$\mathbf{p}' = \frac{\mathbf{p}\kappa_{\mathrm{Tz}}}{\mu K_{\mathrm{z}}}, \ \mathbf{\phi}' = \frac{(\phi - \phi_0)}{\phi_0}, \ \mathbf{T}' = \frac{(\mathbf{T} - \mathbf{T}_1)}{(\mathbf{T}_0 - \mathbf{T}_1)},$$

where $\kappa_{\rm T} = \frac{k_{\rm m}}{(\rho c)_{\rm p}}$ is effective thermal diffusivity of the fluid.

There after dropping the dashes (') for simplicity.

Equations (1) - (5) in non-dimensional form can be written as

$$\nabla \cdot \mathbf{q} = \mathbf{0},\tag{6}$$

$$\mathbf{0} = -\nabla \mathbf{p} \cdot \mathbf{q}_{a} \cdot \mathbf{Rm}\hat{\mathbf{e}}_{z} + \mathbf{RaT}\hat{\mathbf{e}}_{z} - \mathbf{Rn}\varphi\hat{\mathbf{e}}_{z}$$
(7)

$$\frac{\partial T}{\partial t} + q.\nabla T = \left(\eta \nabla_{h}^{2} + \frac{\partial^{2}}{\partial z^{2}}\right)T + \frac{N_{B}}{Le}\nabla \phi.\nabla T + \frac{N_{A}N_{B}}{Le}\nabla T.\nabla T, \quad (8)$$
$$\frac{1}{\sigma}\frac{\partial \phi}{\partial t} + \frac{1}{\epsilon}q.\nabla \phi = \frac{1}{Le}\nabla^{2}\phi + \frac{N_{A}}{Le}\nabla^{2}T, \quad (9)$$

where $\text{Le} = \frac{\kappa_{\text{T}}}{D_{\text{B}}}$ is Lewis number; $\mathbf{q}_{\text{a}} = \left(\frac{1}{\xi}\mathbf{u}, \frac{1}{\xi}\mathbf{v}, \mathbf{w}\right)$

is anisotropic modified velocity vector; $\xi = \frac{K_x}{K_z}$ is me-

chanical anisotropy parameter; $\eta = \frac{\kappa_{Tx}}{\kappa_{Tz}}$ is thermal

anisotropy parameter;
$$\mathbf{Ra} = \frac{\rho g \alpha d \mathbf{K}_{z} (\mathbf{T}_{0} - \mathbf{T}_{1})}{\mu \kappa_{Tz}}$$
 is

Rayleigh Number;
$$\mathbf{Rm} = \frac{(\rho_p \varphi_0 + \rho (\mathbf{1} - \varphi_0)) \mathbf{g} \mathbf{d} \mathbf{K}_z}{\mu \kappa_{Tz}}$$
 is den-

sity Rayleigh number;
$$\mathbf{Rn} = \frac{(\rho_p - \rho)\varphi_0 \mathbf{gk}_1 \mathbf{d}}{\mu \kappa_{T_z}}$$
 is

nanoparticles Rayleigh number; $\mathbf{N}_{A} = \frac{\mathbf{D}_{T}(\mathbf{T}_{0} \cdot \mathbf{T}_{1})}{\mathbf{D}_{B}\mathbf{T}_{1}\boldsymbol{\varphi}_{0}}$ is

modified diffusivity ratio, $N_{B} = \frac{\varepsilon(\rho c)_{p} \phi_{0}}{(\rho c)_{r}}$ is modified

particle-density increment.

The dimensionless boundary conditions are

w = 0, T = 1,
$$\frac{\partial \varphi}{\partial z} + N_A \frac{\partial T}{\partial z} = 0$$
 at z = 0 and

w = 0, T = 0,
$$\frac{\partial \varphi}{\partial z} + N_A \frac{\partial T}{\partial z} = 0$$
 at z = 1. (10)

Basic solutios

The basic state was assumed to be quiescent and is given by

$$u=v=w=0, \quad p=p(z), \quad T=T_{_{b}}(z) \quad \phi=\phi_{_{b}}(z)\,.$$

Equations (6) - (9) using boundary condition (10) give

$$T_{b} = 1 - z, \ \phi_{b} = \phi_{0} + N_{A}z,$$
 (11)

where ϕ_0 is reference value for nanoparticles volume fraction.

The basic is identical with solutions obtained by Nield and Kuznetsov^[22]while basic solution for the nanoparticles volume fraction is different than Agarwal et al.^[1].

Perturbation solutions

To study the stability of the system, we superimposed infinitesimal perturbations on the basic state, which are of the forms

$$q(u, v, w) = 0 + q'(u, v, w), T = T_{b_{a}} + T', \phi = \phi_{b} + \phi', p = p_{b} + p',$$
with $T_{b} = 1 - z, \phi_{b} = \phi_{0} + N_{A}Z_{b}$
(12)

There after dropping the dashes (') for simplicity.

Using the equation (11) in the equations (6) - (9), we obtain the linearized perturbation (neglecting the product of the prime quantities) equations as

$$\nabla \cdot \mathbf{q} = \mathbf{0},\tag{13}$$

$$\mathbf{0} = -\nabla \mathbf{p} \cdot \mathbf{q}_{a} + \mathbf{R} \mathbf{a} \mathbf{T} \hat{\mathbf{e}}_{z} - \mathbf{R} \mathbf{n} \boldsymbol{\varphi} \hat{\mathbf{e}}_{z} , \qquad (14)$$

$$\frac{\partial \Gamma}{\partial t} - w = \left(\eta \nabla_{h}^{2} + \frac{\partial^{2}}{\partial z^{2}}\right) \Gamma + \frac{N_{B}}{Le} \left(N_{A} \frac{\partial \Gamma}{\partial z} - \frac{\partial \varphi}{\partial z}\right) - \frac{2N_{A}N_{B}}{Le} \frac{\partial \Gamma}{\partial z}, \quad (15)$$

$$\frac{1}{\sigma}\frac{\partial \varphi}{\partial t} + \frac{1}{\varepsilon}w = \frac{1}{Le}\nabla^2 \varphi + \frac{N_{A}}{Le}\nabla^2 T$$
(16)

It will be noted that the parameter R_m is not involved in these and subsequent equations. It is just a measure of the basic static pressure gradient.

Eliminating 'p' from equation (14), we have

$$\left(\nabla_{\rm H}^2 + \frac{1}{\xi} \frac{\partial^2}{\partial z^2}\right) w = Ra\nabla_{\rm H}^2 T - Rn\nabla_{\rm H}^2 \varphi, \qquad (17)$$

where $\nabla_{\rm H}^2$, is two-dimensional Laplacian operator on horizontal plane.

NORMAL MODES AND STABILITY ANALYSIS

Analyzing the disturbances into the normal modes and assuming that the perturbed quantities are of the form

 $[\mathbf{w}, \mathbf{T}, \boldsymbol{\varphi}] = [\mathbf{W}(\mathbf{z}), \boldsymbol{\Theta}(\mathbf{z}), \boldsymbol{\Phi}(\mathbf{z})] \exp(\mathbf{i}\mathbf{k}_x \mathbf{x} + \mathbf{i}\mathbf{k}_y \mathbf{y} + \mathbf{n}\mathbf{t}), \quad (18)$ where $\mathbf{k}_x \mathbf{k}_y$ are wave numbers in x and y directions

respectively and n is growth rate of disturbances.

Using equation (18), equations (17), (15) - (16) become

$$\left(\frac{1}{\xi}\mathbf{D}^2 - \mathbf{a}^2\right)\mathbf{W} + \mathbf{a}^2\mathbf{R}\mathbf{a}\Theta - \mathbf{a}^2\mathbf{R}\mathbf{n}\Phi = \mathbf{0},$$
 (19)

$$W + \left(D^2 - \eta a^2 - n + \frac{N_A N_B}{Le} D - \frac{2N_A N_B}{Le} D\right) \Theta - \frac{N_B}{Le} D \Phi = 0 , (20)$$

$$\frac{\mathbf{W}}{\varepsilon} \cdot \frac{\mathbf{N}_{\Lambda}}{\mathbf{Le}} \left(\mathbf{D}^2 - \mathbf{a}^2 \right) \Theta - \left(\frac{1}{\mathbf{Le}} \left(\mathbf{D}^2 - \mathbf{a}^2 \right) \cdot \frac{\mathbf{n}}{\sigma} \right) \Phi = \mathbf{0} .$$
(21)

Aano Solence and Aano Technology An Indian Journal Bboundary conditions are

w = 0, T = 0,
$$\frac{\partial \varphi}{\partial z} + N_A \frac{\partial T}{\partial z} = 0$$
 at z = 0,1. (22)

Where $D = \frac{d}{dz}$ and $a = \sqrt{k_x^2 + k_y^2}$ is dimensionless horizontal resultant wave number.

METHOD OF SOLUTION

The Galerkin weighted residuals method is used to obtain an approximate solution to the system of equations (19)-(21) with boundary conditions (22). In this method, the test functions are the same as the base (trial) functions. Accordingly W, Θ and Φ are taken as

$$W = \sum_{p=1}^{n} A_{p} W_{p}, \Theta = \sum_{p=1}^{n} B_{p} \Theta_{p}, \Phi = \sum_{p=1}^{n} C_{p} \Phi_{p} .$$
(23)

Where A_p , B_p and C_p are unknown coefficients, p = 1, 2, 3,...N and the base functions W_p , Θ_p and Φ_p are assumed in the following form

$$\mathbf{W}_{\mathbf{p}} = \mathbf{\Theta}_{\mathbf{p}} = \mathbf{z}^{\mathbf{p}} - \mathbf{z}^{\mathbf{p+1}}, \ \mathbf{\Phi}_{\mathbf{1}} = \mathbf{N}_{\mathbf{A}} \left(\mathbf{z}^{2} - \mathbf{z} \right) \qquad \text{and}$$

$$\Phi_{\rm p} = \frac{1}{2} N_{\rm A} z^2, p = 2,3,4.....$$
(24)

such that W_p , Θ_p and Φ_p satisfy the corresponding boundary conditions. Using expression for W, Θ and Φ in equations (19)–(21) and multiplying first equation by W_p second equation by Θ_p and third by Φ_p and integrating in the limits from zero to unity, we obtain a set of 3N linear homogeneous equations in 3N unknown A_p , B_p and C_p ; p=1,2,3,...N. For existing of non trivial solution, the vanishing of the determinant of coefficients produces the characteristics equation of the system in term of Rayleigh number Ra.

STABILITYANALYSIS

We confine ourselves to the one- term Galerkin approximation. Thus eigenvalue equation is given by

$$a^{2}Ra\left(\left(a^{2}+10\right)+\frac{nLe}{\sigma}\right)+a^{2}Rn\left(N_{A}\left(a^{2}+10\right)+\frac{Le}{\epsilon}\left(\eta a^{2}+10+n\right)\right)$$
$$-\left(a^{2}+\frac{10}{\xi}\right)\left(\left(a^{2}+10\right)+\frac{nLe}{\sigma}\right)\left(\eta a^{2}+10+n\right)=0.$$
(25)

For neutral stability the real parts of the n is zero. Hence on putting $n = i\omega$, (where ω is real and dimensionless quantity) in equation (25), we have

$$a^{2}Ra(a^{2}+10)+\frac{i\omega Le}{2}+a^{2}Rn(N(a^{2}+10)+\frac{Le}{2}(ma^{2}+10+i\omega))$$
 number is given by $Ra_{\perp}=10$

$$= \frac{10}{\varepsilon} \left[\left(a^{2} + \frac{10}{\xi}\right) + \frac{10}{\varepsilon} + \frac{10}{\varepsilon} + \frac{10}{\varepsilon} + \frac{10}{\varepsilon} + \frac{10}{\varepsilon} + \frac{10}{\varepsilon} \right] \left(a^{2} + \frac{10}{\varepsilon} + \frac{10}$$

Stationary convection

For stationary convection $\omega = 0$ with one- term Galerkin approximation, equation (25) reduces to

$$Ra = \frac{1}{a^{2}} \left(a^{2} + \frac{10}{\xi} \right) (\eta a^{2} + 10) - \frac{\left(a^{2} + 10 \right) N_{A} + \left(\eta a^{2} + 10 \right) \frac{Le}{\epsilon}}{\left(a^{2} + 10 \right)} Rn \quad (27)$$

It is clear from equation (27) that stationary Rayleigh number Ra is a function of dimensionless wave number a, thermal anisotropy parameter η , mechanical anisotropy parameter ξ , Lewis number Le, modified diffusivity ratio N_A, porosity ε and nanoparticles Rayleigh number Rn independent of modified particle -density increment parameter N_B. Thus instability is purely phenomena due to buoyancy coupled with conservation of nanoparticles. Thus average contribution of nanoparticles flux in the thermal energy equation is zero.

The critical cell size at the onset of instability is ob-

tained from the condition
$$\left(\frac{\partial Ra}{\partial a}\right)_{a = a_{c}} = 0$$
, which

gives

$$\left(\eta a_{c}^{4} - \frac{100}{\xi}\right) \left(a^{2} + 10\right)^{2} - (10\eta - 10)a_{c}^{2}\frac{Le}{\varepsilon}Rn = 0.$$
 (28)

Thus critical wave number a_c depends upon thermal anisotropy parameter η , mechanical anisotropy parameter ξ , Lewis number Le, modified diffusivity ratio N_A , porosity ε and nanoparticles Rayleigh number Rn and independent of modified particle -density increment parameter N_B . The interweaving behaviors' of Brownian motion and thermoporesis of nanoparticles evidently does not change the critical size of the Bénard cell at the onset of instability. As such, the critical size is not a function of any thermo physical properties of nanofluid.

In the absence nanoparticles $[Rn = Le = N_A = 0]$ i.e. for ordinary fluid, critical wave number is given by

$$a_c = \sqrt{\frac{10}{\sqrt{\eta\xi}}}$$
 and the corresponding critical Rayleigh

number is given by Ra_c = $10\left(\frac{\sqrt{\eta}}{\xi} + 1 + \frac{\eta}{\xi} + \frac{\sqrt{\eta}}{\sqrt{\xi}}\right)$.

For isotropic porous medium i.e. if $\xi = \eta = 1$, the critical wave number $a = \sqrt{10}$ and corresponding critical Rayleigh number $Ra_c = 40$.

Thus in the absence of nanoparticles [Rn = Le = $N_A = 0$] for the case of isotropic porous medium [$\xi = \eta = 1$] the critical Rayleigh number is given by Ra_c = 40, which slightly greater than critical Rayleigh number Ra_c = $4\pi^2$, result obtained by Lapwood (1948) for regular fluid.

Oscillatory convection

For oscillatory convection we have $\omega \# 0$, thus on equating the real and imaginary parts of equation (26), we have

$$a^{2}Ra(a^{2}+10)+a^{2}Rn\left((a^{2}+10)N_{A}+(\eta a^{2}+10)\frac{Le}{\epsilon}\right) = \left(a^{2}+\frac{10}{\xi}\right)\left((\eta a^{2}+10)(a^{2}+10)-\frac{\omega^{2}Le}{\sigma}\right), (29)$$

and

$$\omega \left(a^2 R a \frac{Le}{\sigma} + a^2 R n \frac{Le}{\epsilon} - \left(a^2 + \frac{10}{\xi} \right) \left(\left(a^2 + 10 \right) + \left(\eta a^2 + 10 \right) \frac{Le}{\sigma} \right) \right) = 0.$$
(30)
In order for ω to be real it is necessary that

$$a^{2}Ra(a^{2}+10)+a^{2}Rn\left((a^{2}+10)N_{A}+(\eta a^{2}+10)\frac{Le}{\varepsilon}\right) \leq \left(a^{2}+\frac{10}{\xi}\right)((\eta a^{2}+10)(a^{2}+10))$$
(31)

As we have noted that for typical nanofluid Le is of order 10^2 - 10^3 and N_A is not greater than 10, Rn are of order 10- 10^2 and ϵ , ξ and η are of the order 10^{-3} - 10^{-1} . Under these approximations inequality (31) does not hold if

$$a^{2}Ra(a^{2}+10)+a^{2}Rn\left((a^{2}+10)N_{A}+(\eta a^{2}+10)\frac{Le}{\varepsilon}\right) \geq \left(a^{2}+\frac{10}{\xi}\right)((\eta a^{2}+10)(a^{2}+10))$$
 and

hence ω is not real.

Thus oscillatory convection has been ruled out if

$$\mathbf{a}^{2}\mathbf{R}a(a^{2}+10)+\mathbf{a}^{2}\mathbf{R}n\left((a^{2}+10)\mathbf{N}_{A}+(\eta a^{2}+10)\frac{Le}{\varepsilon}\right)\geq.$$
Reaso Solence and Reaso Technology
At Paulan Gorman

$$\left(a^{2}+\frac{10}{\xi}\right)((\eta a^{2}+10)(a^{2}+10))$$

To study the influence of thermal anisotropy parameter η , mechanical anisotropy parameter ξ , Lewis number Le, modified diffusivity ratio N_A and porosity ε on the stationary convection for the case of bottomheavy distribution of nanoparticles [negative value of

Rn], we examine the behaviour of $\frac{\partial Ra}{\partial \eta}$, $\frac{\partial Ra}{\partial \xi}$, $\frac{\partial Ra}{\partial Le}$,

$$\frac{\partial \mathbf{Ra}}{\partial \mathbf{N}_{A}}$$
 and $\frac{\partial \mathbf{Ra}}{\partial \varepsilon}$ analytically.

From equation (27), we have

$$\mathbf{Ra} = \frac{1}{a^2} \left(a^2 + \frac{10}{\xi} \right) (\eta a^2 + 10) - \frac{\left(a^2 + 10 \right) N_A + \left(\eta a^2 + 10 \right) \frac{Le}{\epsilon}}{\left(a^2 + 10 \right)} \mathbf{Rn}$$

1)
$$\frac{\partial \mathbf{R}\mathbf{a}}{\partial \eta} = \left(\mathbf{a}^2 + \frac{\mathbf{10}}{\xi}\right) - \frac{\mathbf{a}^2}{\left(\mathbf{a}^2 + \mathbf{10}\right)} \frac{\mathbf{L}\mathbf{e}}{\varepsilon} \mathbf{R}\mathbf{n}$$
, As we have

noted that for typical nanofluid Le is of order 10^2 - 10^3 , ε , ξ and η are of the order 10^{-3} - 10^{-1} and Rn <0 [for a bottom-heavy distribution of nanoparticles]. Under these approximations

 $\frac{\partial \mathbf{Ra}}{\partial \eta} > 0$, thus thermal anisotropy parameter η has stabilizing effect on the stationary convection.

- 2) $\frac{\partial \mathbf{Ra}}{\partial \xi} < 0$, thus mechanical anisotropy parameter ξ destabilize the stationary convection.
- 3) $\frac{\partial \mathbf{Ra}}{\partial \varepsilon} < 0$, thus porosity destabilizes the stationary convection.
- 4) $\frac{\partial \mathbf{Ra}}{\partial \mathbf{Le}} > 0$, thus Lewis number stabilize the stationary convection.
- 5) $\frac{\partial \mathbf{Ra}}{\partial \mathbf{N}_{A}} > 0$, which mean that modified diffusivity ratio stabilize the stationary convection.

RESULTS AND DISCUSSION

The thermal instability in a horizontal layer of

Aano Solence and Aano Technology An Indian Journal nanofluid is investigated. The expression for the stationary Rayleigh number is given by equation (27). The graphical representation of the effects of anisotropic parameters on stationary convections for a bottomheavy distribution of nanoparticles [negative value of Rn] ares given in Figures 2- 6.

Figure 2 indicates the effect of thermal anisotropy parameter η , on the stationary convection for the fixed value of Le = 500, $\xi = 0.6$, $\varepsilon = 0.4$, $N_A = 5$, Rn = - 1 and it is found that the critical Rayleigh number increases with increase in the value of thermal anisotropy parameter η , indicating that the effect of thermal anisotropy parameter η is to inhibit the onset of convection.

Figure 3 indicates the effect of mechanical anisotropy parameter ξ on the stationary convection for the fixed value of Le = 500, η = 0.8, ε = 0.4, N_A=5, Rn= - 1 and it is found that the stationary Rayleigh number decreases with increase in the value of mechanical anisotropy parameter ξ , thus mechanical anisotropy parameter ξ is to advance the onset of stationary convection.

Figure 4 shows the variation of Rayleigh number with wave number for the fixed value of Le = 500, η = 0.7, ξ = 0.4, N_A = 5, Rn = -1 and different value of the porosity and it is found that the Rayleigh number decreases with increase in the value of porosity thus porosity destabilize the stationary convection. This is good agreement of the result obtained by Chand and Rana^[5].

Figure 5 shows the variation of stationary Rayleigh number Ra with wave number a for for the fixed value

Figure 2 : Variation of stationary Rayleigh number with wave number for different values of thermal anisotropy parameter η

а

d

D_B

D_T

g

K

K_x,

K_z

Le

n

N_A

 N_{B}

Full

451

Figure 3 : Variation of stationary Rayleigh number with wave number for different values of mechanical anisotropy parameter ξ

Figure 4 : Variation of stationary Rayleigh number with wave number for different values of porosity ϵ

of $\eta = 0.7$, $\xi = 0.4$, $\varepsilon = 0.5$, $N_A = 5$, Rn = -1 and different values of Lewis number. It is found that the Rayleigh number Ra increases as values of Lewis number inceases. Thus, Lewis number stabilizes the stationary convection. This is good agreement of the result obtained by Chand and Rana (2012a).

Figure 6 shows the variation of stationary Rayleigh number Ra with wave number a for fixed value of $\eta = 0.7$, $\xi = 0.4$, $\varepsilon = 0.5$, Le = 500, Rn = - 1 and different values of modified diffusivity ratio N_A. It is found that the Rayleigh number Ra increases as values of modified diffusivity ratio stabilizes the stationary convection. This is good agreement of the result obtained by Chand and Rana^[5].

Figure 5 : Variation of stationary Rayleigh number with wave number for different values of Lewis number

Figure 6 : Variation of stationary Rayleigh number with wave number for different values of modified diffusivity ratio NA

NOMENCLATURE

wave number
depth of fluid layer
diffusion coefficient
thermophoretic diffusion coefficient
gravity force
Permeability tensor
permeability in x-direction
permeability in z- direction
Lewis number
growth rate of disturbances
modified diffusivity ratio
modified particle -density increment
Nano Science and Nano Technology

An Indian Journal

- p pressure
- q Darcy velocity vector
- **q** anisotropic modified velocity vector
- Ra thermal Rayleigh Darcy number
- Ra critical Rayleigh Darcy number
- Rm density Rayleigh number
- Rn concentration Rayleigh number
- t time
- T temperature
- (u, v, w) velocity components
- (x, y, z) space co-ordinates

Greek symbols

- α thermal expansion coefficient
- μ viscosity
- ε porosity along horizontal plane
- σ heat capacity ratio
- ρ density of the nanofluid
- ρ_{p} density of nano particles and
- $(\rho c)_{m}$ heat capacity in porous medium
- $(\rho c)_{n}^{m}$ heat capacity of nano particles
- φ volume fraction of the nanoparticles
- ξ , mechanical anisotropy parameter
- η thermal anisotropy parameter
- $\kappa_{\rm T}$ thermal diffusivity tensor
- ω frequency of oscillation
- $\nabla_{\rm H}$ two-dimensional Laplacian operator

Superscripts

non-dimensional variables

Subscripts

٢

- p particle
- f fluid
- b basic solution
- h horizontal plane

CONCLUSIONS

Thermal instability in a horizontal layer of nanofluid an in anisotropic porous medium is investigated. The influences of anisotropic parameters and other parameters on the stationary have been investigated both analytically and graphically.

The main conclusions are:

1) Basic solution for the nanoparticles volume fraction is changed with zero-flux of volume fraction of nanoparticles

- 2) Presence of nanoparticles decreases the stability of system.
- 3) Oscillatory convection has been ruled out if

$$a^{2}Ra(a^{2}+10)+a^{2}Rn\left((a^{2}+10)N_{A}+(\eta a^{2}+10)\frac{Le}{\varepsilon}\right) \geq \left(a^{2}+\frac{10}{\xi}\right)((\eta a^{2}+10)(a^{2}+10))$$

- 4) The presence of the nanoparticles lowers the value of the critical Rayleigh number by usually by substantial amount. Thus nanofluid is less stable as compared to regular fluid.
- 5) Thermal anisotropy parameter, Lewis number and modified diffusivity ratio stabilize the stationary convection for the case of bottom-heavy distribution of nanoparticles [negative value of Rn].
- 6) Porosity and mechanical anisotropy parameter destabilizes the stationary convection for the case of bottom-heavy distribution of nanoparticles [negative value of Rn].

REFERENCES

- [1] S.Agarwal, B.S.Bhadauria, P.G.Siddheshwar; Thermal instability of a nanofluid saturating a rotating anisotropic porous medium Spec, Top.Rev.Porous Media, **2**, 53-64 (**2011**).
- [2] J.Buongiorno; Convective Transport in Nanofluids, ASME J.Heat Transf., **128**, 240-250 (**2006**).
- [3] R.Chand; Thermal instability of rotating nanofluid, Int.J.Appl.Math and Mech., 9(3), 70-90 (2013a).
- [4] R.Chand; On the onset of Rayleigh-Bénard convection in a layer of nanofluid in Hydromagnetics, Int.J.of Nanoscience, 12(6), 1350038 (2013b).
- [5] R.Chand, G.C.Rana; On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium, Int.J.Heat Mass Transfer, 55, 5417–5424 (2012a).
- [6] R.Chand, G.C.Rana; Oscillating Convection of Nanofluid in Porous Medium, Transp Porous Med., 95, 269-284 (2012b).
- [7] R.Chand, G.C.Rana; Thermal instability of Rivlin– Ericksen Elastico-viscous nanofluid saturated by a porous medium, J.Fluids Eng., 134(12), 121203-7 (2012c).
- [8] R.Chand,G.C. Rana, S.Kumar; Variable gravity effects on thermal instability of nanofluid in anisotro-

Aano Solence and Aano Technology An Indian Journal

pic porous medium, Int.J.of Appl.Mech. and Engg., **18(3)**, 631-642 (**2013a**).

- [9] R.Chand, G.C.Rana, A.Kumar, V.Sharma; Thermal instability in a layer of nanofluid subjected to rotation and suspended particles, Research J.Science and Tech., **5**(1), 32-40 (**2013b**).
- [10] R.Chand, G.C.Rana; Hall Effect on the thermal instability in a horizontal layer of nanofluid, Journal of Nanofluids, **3**, 247-253 (**2014**).
- [11] S.Chandrasekhar; Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York (1981).
- [12] S.Choi; Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME FED-Vol. 231/MD, 66, 99-105 (1995).
- [13] A.V.Kuznetsov, D.A.Nield; Effect of local Thermal Non-equilibrium on the onset of Convection in a Porous Medium Layer Saturated by a nanofluid, Transport in Porous Media, 83, 425-436 (2010a).
- [14] A.V.Kuznetsov, D.A.Nield; Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model, Transp.Porous Medium, 81, 409-422 (2010b).
- [15] A.V.Kuznetsov, D.A.Nield; the onset of double-diffusive nanofluid convection in a layer of a saturated porous medium, Transport in Porous Media, 85(3), 941-951 (2010c).
- [16] E.R.Lapwood; Convection of a fluid in porous medium, Proc.Camb.Phil.Soc., 44, 508-519 (1948).
- [17] D.A.Nield, A.Bejan; Convection in Porous Medium, Springer, 4th Edition New York (2013).

- [18] D.A.Nield, A.V.Kuznetsov; Thermal instability in a porous medium layer saturated by a nanofluid, Int.J.Heat Mass Transf., 52, 5796-5801 (2009).
- [19] D.A.Nield, A.V.Kuznetsov; The onset of convection in a horizontal nanofluid layer of finite depth, European Journal of Mechanics - B/Fluids, 29, 217-223 (2010a).
- [20] D.A.Nield, A.V.Kuznetsov; The onset of convection in a layer of cellular porous material: effect of temperature-dependent conductivity arising from radiative transfer, J.Heat Transfer, 132(7), 074503 (2010b).
- [21] D.A.Nield, A.V.Kuznetsov; The onset of doublediffusive convection in a nanofluid layer, International Journal of Heat and Fluid Flow, 32, 771-776 (2011).
- [22] D.A.Nield, A.V.Kuznetsov; Thermal instability in a porous medium layer saturated by a nanofluid: A revised model, Int.J.of Heat and Mass Transfer, 68, 211-214 (2014).
- [23] G.C.Rana, R.C.Thakur, S.K.Kango; On the onset of Thermosolutal instability in a layer of an elasticoviscous nanofluid in porous medium, FME Transactions, 42, 1-9 (2014).
- [24] K.A.Vafai, H.A.Hadim; Hand Book of Porous Media, M.Decker, New York (2000).
- [25] R.A.Wooding; Rayleigh instability of a thermal boundary layer in flow through a porous medium, J.Fluid Mech., 9, 183-192 (1960).