Theoretical study of the O\(^1\)D) reaction with methane

Ang-Yang Yu*
Chinese Academy of Sciences, Shenyang, Liaoning province, 110016, (CHINA)
E-mail: wisdomyay@163.com

ABSTRACT

The quasi-classical trajectory (QCT) calculation for the reaction O\(^1\)D) + CH\(_4\) is carried out based on a constructed London-Eyring-Polanyi-Sato (LEPS) potential energy surface (PES). Importance in this work has been attached to calculating the OH + CH\(_3\) channel. Product angular distribution has been studied so as to make comparison with experiments. The calculated results are in excellent agreement with available experimental results. It indicates strongly that there are a forward scattered peak and a backward scattered peak for the OH product relative to the O\(^1\)D) beam direction at the collision energy of 6.8 Kcal/mol.

INTRODUCTION

Over the past twenty years, there have been tremendous developments in the state-of-art of the crossed molecular beam experiments\(^{[1,2]}\). The universal crossed molecular beam apparatus\(^{[3]}\) provides us with many useful experimental results about the multiple channel dynamics in the O\(^1\)D) reaction with alkane molecules\(^{[4]}\).

The reactivity of the singlet O atom is very important in many research areas. This is largely due to its high reactivity with other molecules, owing to its ability to insert into other chemical bonds with small or no reactive barriers. The reaction of O\(^1\)D) with CH\(_4\) has been studied previously using various experimental\(^{[5-23]}\) and theoretical methods\(^{[24,25]}\). It is now well established that the dominant reaction channel of the O\(^1\)D) reaction with CH\(_4\) is the CH\(_3\) + OH channel. In spite of the abundant experimental information available for the O\(^1\)D) + CH\(_4\) reaction, theoretical studies on these types of reactions are very scarce. In this article, the QCT calculation of the O\(^1\)D) + CH\(_4\) → CH\(_3\) + OH is investigated in order to compare with previous experimental results. Such study allows the theoretical dynamical calculations to compare with experimental results. The comparison is of great importance to the understanding of these complicated reaction systems.

This paper is outlined as follows. In Sec II, the theory and the calculation details are introduced. In Sec III, the calculated results of the potential energy surface and product angular distribution are discussed. We end with a summary in Sec IV.

THEORY

LEPS potential energy surface

The extended LEPS potential energy surface (PES) is employed to study the O\(^1\)D) + CH\(_4\) → OH + CH\(_3\) reaction using the quasi-classical trajectory (QCT) method. The methyl group was treated as an atom of 16.0 amu for the LEPS potential energy surface of the O\(^1\)D) + CH\(_4\) → OH + CH\(_3\) system.
Theoretical study of the O(1D) reaction with methane

by adjusting (i=1,2,3) is constructed, and all the parameters are presented in TABLE 1.

Quasi-classical trajectory (QCT) calculations

The well-known CLASTR program[27] was used to perform the quasi-classical trajectory calculations. Since this program is only applied to the A+BC system, the methyl group was treated as a single atom of 16.0 amu. The classical Hamilton's equations for motion were integrated numerically in three dimensions. In the calculations, 2×10^4 trajectories were sampled and the trajectories were initiated with O-CH$_3$ inter-nuclear separation of 13 U. The integration step size in the trajectories was chosen to be 40 fs.

RESULTS AND DISCUSSIONS

Potential energy surface

The LEPS potential energy surface is constructed according to the experimental data[28]. The reaction profile along the minimum energy path from reactants to products on the LEPS PES of the O(1D)+CH$_4$→OH+CH$_3$ reaction is presented in Figure 1.

TABLE 1 : Morse parameters for the LEPS PES for the O(1D)+ CH$_4$ → OH+ CH$_3$ reaction

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OH</th>
<th>H- CH$_3$</th>
<th>O- CH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_i/eV</td>
<td>6.587</td>
<td>4.8202</td>
<td>6.03</td>
</tr>
<tr>
<td>β_i /U</td>
<td>0.6413</td>
<td>0.6230</td>
<td>0.5797</td>
</tr>
<tr>
<td>r_{0i} /U</td>
<td>0.9697</td>
<td>1.1562</td>
<td>1.4407</td>
</tr>
<tr>
<td>S_i</td>
<td>1.910</td>
<td>0.5</td>
<td>-0.151</td>
</tr>
</tbody>
</table>

Figure 1 : The reaction profile along the minimum energy path from reactants to products on the LEPS PES of the 16O(1D)+CH$_4$.

Organic CHEMISTRY
An Indian Journal
Product angular distribution

A three-dimension center of mass product flux diagram is constructed. As is shown in the Figure 2 above, the overall OH product is clearly forward scattered relative to the O(^1D) beam direction. In addition to the forward scattered OH product, there is also a backward scattered peak for the OH product relative to the O(^1D) beam direction.

In the QCT simulations using the CLASTR program, the O(^1D)+ CH₄→OH+ CH₃ channel was investigated at the collision energy of 6.8Kcal/mol. Based on the theoretical results, the product angular distribution is plotted in Figure 3.

In comparison with the experiment product angular distribution, the theoretical diagram also illustrates the backward scattered OH peak and the forward scattered OH product. The scattered dots in the figure are calculated from the output file of
the program. Although there isn’t the result in the CM 0° direction, the trend is clear. That is to say, there is a clear forward scattered OH product peak relative to the O(1D) beam direction. The theoretical product angular distribution is in good agreement with the experimental result.

From the product angular distribution of the O(1D)+CH₄ → OH+ CH₃ channel, a long-lived complex pathway is likely to be very important because of the deep well in the MEP path in the LEPS potential energy surface. There could also be a direct pick-up or a short-lived complex mechanism because of the more obvious forward scattered product.

CONCLUSION

In summary, the QCT calculations were performed in order to compare with the experimental results for the O(1D)+CH₄ → OH+ CH₃ reaction. The calculated results demonstrate that there is also the forward scattered OH product and a backward scattered peak for the OH product relative to the O(1D) beam direction at the collision energy of 6.8Kcal/mol. This theoretical product angular distribution is quite consistent with available experimental result. Theoretical studies of other reaction channels O(1D)+CH₄ → H₂CO/H₃CO+H and O(1D)+CH₄ → H₂CO/HCOOH+H₂ are underway in order to compare with previous experimental results.

ACKNOWLEDGMENTS

This work is supported by the Natural Science Foundation of China (Grant No.20973076). Professor Ke-li Han is acknowledged for his provision of the CLASTR program.

REFERENCES