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ABSTRACT

In the this work, we investigated the behavior of the static structure
factor, S(k), for a dense classical insulating liquid based on an analytical
expression for the hard-sphere radial distribution function (HS-RDF).
Although HS-RDF gives a good description for the large angle behavior
of S(k) over a wide range of densities, it fails to predict the low angle
behavior of S(k) at low densities. A correction to the DCF for HS fluids,
originally suggested by Henderson et al., is given, which removes this
shortcoming. The applied DCF involves a reliable interaction, and allows
one to obtain a good accuracy for the low-k behavior of S(k) over low
densities. The closure considered here provides very well the Ornstein-
Zernike (OZ) behavior of S(k) at low-k for monatomic fluids, and shows
the regularity that a minimum S(k) varies linearly with density, which is
correct just for insulator fluids.  2013 Trade Science Inc. - INDIA

INTRODUCTION

The classical theories suggested for the structures
and thermodynamic properties of hard-sphere (HS) flu-
ids have been stabilized in the 1960s and early 1970s
on the basis of two parallel but complementary ap-
proaches: the scaled-particle theory and the integral
equation theory[1,2]. The first theory was developed by
interpolating classical and statistical considerations on
the free energy for the creation of spherical cavities
(scaled particles) in a HS fluid. Thermodynamic prop-
erties and the contact values for the pair distribution
functions from this approach are in good agreement with
the simulation results. The integral equation theory, on

the other hand, is primarily based upon the Ornstein�
Zernike (OZ) equation coupled with the Percus�Yevick
(PY) closure[3-6]. Analytical solution to the PY equation
was first developed by Thiele[7], and independently by
Wertheim for uniform HSs[8], and by Lebowitz and
Rowlinson for HS mixtures[2]. The pair distribution func-
tion in the PY equation is in good agreement with the
simulation results (except for near-contact) but the ther-
modynamic properties derived from different routes do
not always agree with each other.

The radial distribution function (RDF) and the di-
rect correlation function (DCF) with its close relative,
the static structure factor S(k), are the basic quantities
used to discuss the thermodynamic properties and struc-
ture of a liquid[9-13]. The importance of correlation func-
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tions arise from the fact that, given the form of potential
of the intermolecular forces, if the RDF is known as a
function of the density ñ and temperature T, the stan-
dard methods of statistical mechanics allow for the de-
termination of all the equilibrium properties of the fluid.
The quantity of S(k), as one of the important properties
characterizing a liquid, is a measure of interparticle cor-
relations in the reciprocal space. An accurate knowl-
edge of this quantity is crucial for studying numerous
thermodynamic and transport properties of any fluid
system. The static structure factor is experimentally
measured by the use of the neutron and X-ray scatter-
ing techniques[14].

It is clear that prediction of the structural and ther-
modynamic properties of dense fluids requires an ac-
curate knowledge concerning the interatomic poten-
tial[15,16]. The most direct probe of a realistic potential is
in the experimental observation of the static structure
factor closely related to density fluctuations, and con-
tains useful information about short- and long-range
parts of the pair and higher-order potentials. Clearly,
the short-range part of interaction potential is better
understood than the long-range one, and the outcome
of the structural properties cannot be fully attributed to
the effect of the two-body interactions alone because
such a description is not strictly valid since the interac-
tion between two particles is disturbed by the presence
of a close third particle. Therefore, a correction to the
pair potential established at an electronic level and sus-
pected to be the three-dipole dispersion interaction is
required. The importance of a quantitative investigation
of the long-range part of interaction potential, including
two- and three-body dispersion forces, has been em-
phasized for long time[12-20].

In this work, we used an analytical expression for
HS-RDF to calculate S(k) over a wide range of k for
real monatomic liquids. The applied HS-RDF model
can not satisfy the thermodynamic states with low den-
sities[21]. Thus we considered another approach for this
region. It is based on a known definition of the DCF by
Henderson et al.[22] which may be used to predict the
behavior of S(k) for monatomic fluids at low densities.
In this model, a linear combination of the PY function,
applied for the core of the DCF, and a non-linear ex-
pression for its tail is used. Also, this model improved
under an effective intermolecular parameter. In this way,

we investigated the behavior of S(k) for a wide range
of thermodynamic states.

This paper is organized as follows. In Sec. 2, we
start by briefly describing the method used to indicate
the analytical expression for the HS-RDF model in or-
der to predict the behavior of S(k) for the argon and
xenon liquids at high densities. In Sec. 3, the low-k
behavior of S(k) is evaluated for low densities using a
known definition of the DCF. Moreover, we attempt to
assess that the first minimum S(k) varies linearity with
density, as a regularity, in monatomic fluids. The paper
is closed in Sec. 4, where we review our findings, and
provide some concluding remarks.

PREDICTION OF S(K) OVER HIGH DENSI-
TIES

Since the HS-RDF model is frequently used to pro-
vide reference fluid properties in the perturbation theo-
ries for simple liquids, we used an expression for HS-
RDF presented by Smith and Henderson[21] in order to
predict the behavior of S(k) versus wave vector k for
monatomic fluids. This model includes the following for-
mula for spherical particles of uniform size, , with the
scaled distance variable x = r/ :
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where ç is the packing fraction, and the functions t
i
,

S(t) and L(t) have the same definitions as in Ref. [21]. In
summary, the calculated algorithm for HS-RDF (Eq. 3)
is fully described in Refs[21,23].

The results obtained for the HS-RDF calculations
for liquid Xe at the three densities 8.38, 16.35, and
18.46 mol/L are shown in Figure 1. For the three first
shells in Figure 1, we considered that the RDF values
increase with density, which is expected.

We may use the HS-RDF model to calculate the
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structure factor S(k) from a Fourier transform as:
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Figure 2 shows the calculated results for the behavior
of S(k) at a wide range of k for liquid Xe at the densi-
ties similar to those in figure 1 (upper part of Figure 2),
and for liquid Ar at the three densities 16.75, 24.58,
and 33.51 mol/L (lower part of Figure 2). According to
Figure 2, the qualitative behavior of S(k) is correctly
generated, and the numbers and heights of bumbings
are increased with density, which is expected[17].

Figure 3 gives a comparison between the RDF cal-
culated on the basis of this model and the Yarnel�s mo-
lecular dynamic calculations on a lennard-Jones (LJ)
fluid[24]. It is clear that the agreement is rather good
over a wide range of r, where r > ó.

The results obtained for the HS-RDF calculations
at low-densities such as reduced density  = 0.01 is
shown in Figure 4. According to this figure, at low den-
sities, the shape of g(x) seems much poorer around the
shell positions, and the results may be meaningless
around the first shell.

Figure 5 shows the behavior of S(k) for similar fea-
tures in Figure 4. Clearly, while the shape of S(k) seems
the same as that at high densities, the qualitative feature
for the OZ behavior of S(k) can not be claimed for the
low-k region. However, although the applied HS-RDF
gives useful results for g(r) and S(k) for simple fluids at
high-densities, it fails to describe the structure factor at
low-densities, most noticeably at low-k, where attrac-

Figure 1 : Hard-sphere radial distribution function, g(r),
versus r for Xe liquid at several densities: 8.38 (Ë%), 16.35

(Ê%) and 18.46 mol/L (*).

Figure 2 : Structure factor S(k) in wide range of k for Xe
liquid at several densities: 8.28 (�), 16.35 (�) and 18.64

mol/L (___), upper part, and for Ar liquid at several densities:
16.75 (�), 24.58 (�) and 33.51 mol/L (___), lower part.

Figure 3 : Comparison of the theoretical (line) and Yarnel�s
molecular dynamic24 calculations (symbol) for HS-RDF.

tive forces are important, and a HS repulsion alone
seems to be unable to describe this feature correctly.
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PREDICTION OF S(K) OVER LOW DENSI-
TIES

As mentioned earlier, different paths have been fol-
lowed to obtain an improved expression for the struc-
ture and thermodynamic properties of HS fluids. The
main approach is focused on the integral equation theory.
This theory is primarily based on the OZ equation as:

rd)rr(c)r(h)r(c1)r(g
0

 


(5)

where  is the number density, and h(r) = g(r)-1 is the
total correlation function. Henderson et al.[23] have im-
proved more accurate representation of the HS-RDF

model so that the equation of state derived from the
Virial theorem and the fluctuation theorem consisted
each other. They obtained the following expression for
the DCF:
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where c
PY

(r) is the DCF of the HS reference fluid that
is expressed by the PY equation for the HS fluid, * =
3 is the reduced density, and B is chosen to give the
correct discontinuity of the DCF at r = . We consid-
ered a similar term in Eq. 6 to predict the S(k) behavior
at low densities. We merely claim that it may be suffi-
ciently accurate to permit reliable of the DCF for more
realistic systems with attractive forces. We obtained
parameter B in Eq. 6 under the consistency in thermo-
dynamic conditions using the pvT data as:
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where B
r
 denotes the reduced bulk modulus, P is the

pressure, and k
B
 is the Boltzmann�s constant. On the

other hand, parameter B (eq. 6) is a state-dependent
quantity that can be calculated in any thermodynamic
state.

As mentioned above, by obtaining parameter B,
we may calculate the c(r) function at all the range for r,
and then calculate c(k) and S(k) using the following
equations:
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where c(k) is the Fourier transform of DCF, and:

(9)

It is clear that all the approximations used in the model
may be exaggerated in the Fourier transform. There-
fore, we evaluated accuracy of the model via predic-
tion of the behavior of S(k).

In Figure 6, we present the behavior of S(k) at a
wide range of k for fluid Xe at the density 0.33 mol/L.
Our results showed that the qualitative behavior of S(k)
was correctly generated at the low density region. Ac-
cording to Figure 6, our calculations are capable of pre-
dicting the OZ behavior of S(k) at the low-k region
with a minimum value of S(k). This behavior verifies

Figure 4 : Hard-sphere radial distribution function, g(x),
versus reduced distance at low reduced density  = 0.01.

The next section is concerned with how the HS model
can be improved so as to remove this discrepancy.

Figure 5 : Behavior of the structure factor for the same
feature of figure 4.
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However, our calculations denote good qualitative
results at a wide range of k over low densities but the
prediction of low-k behavior of S(k) is a considerable
result. In this way, we showed the low-k behavior of
S(k) for fluid Xe along the isochor 2.28 mol/L in Figure
7. As we can observe in this figure, when the tempera-
ture reduces and approaches the thermodynamic state
with low repulsion interactions (or considerable long-
range attractions), the values for S(k) diverge at k �! 0.
This is expected because the thermal density fluctua-
tions of atoms or molecules in a system increase, where
the long-range correlation length increases[25-30].

that the long-range attraction forces have correctly been
taken into account in the DCF model (Eq. 6).

Figure 6 : Behavior of the structure factor at wide range of
reduced wave factor (k) for Xe fluid at density  = 0.33 mol/
L.

CONCLUSION

This article is concerned with the structural proper-
ties of argon-like fluids at a wide range of densities. In
this study, we used an analytical expression for the HS-
RDF model to calculate the structure factor at high den-
sities. Since the values for S(k) at a low wave factor is
very sensitive to the attractive forces, which are impor-
tant at low densities, the HS-RDF model fails in these
thermodynamic states. Thus we applied a modified DCF
model based on the thermodynamic consistency for
predicting the behavior of S(k) at low densities. In this

Figure 7 : Small-k behavior of S(k) for Xe fluid along the
isochor 2.28 mol/L: 260 (), 285 () and 300 K ().

Furthermore, in order to evaluate the behavior of
the first minimum S(k), we calculated the small-angle
structure factor for Xe at T = 300 K over the range of
low densities. The results obtained show that our model
is capable of giving a good qualitative description of the
OZ behavior for S(k) at low-k, in which there is an
observable minimum of S(k) whose values and posi-
tions vary with the thermodynamic states. In Figure 8,
we plotted the variation of S(k)

min
 versus  at T = 300

K. According to this figure, the values for S(k)
min

 vary
with a linear relation with density. It seems that the val-
ues for S(k)

min
 are related to the range and values of the

attraction forces, and so they should be decreased with
increase in density. In fact, the long-range attractive
contribution was accurately taken into account by com-
puting a state-dependent parameter B (eq. 6) in our
closure.

Figure 8 : Linear behavior of S(k)
min

 versus  for Xe at T =
300 K.
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model, a PY expression for the DCF inside the repul-
sive core (r < ó) was softed with a long-ranged inter-
action by a non-linear expression.

It was found that our closure provided very well
the OZ behavior of S(k) at low-k. Furthermore, it was
found that there is a minimum S(k) at low-k for a wide
range of thermodynamic states in simple fluids, in which
the positions and values for this minimum vary linearly
with density. This behavior was also observed in the
experimental measurements.
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