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ABSTRACT 
 
The article illustrates the matrix decomposition method applied to finding total solutions
to matrix equation. It is known that, there are minimal polynomial and characteristic
polynomial for matrix order n they played an important part in matrix theory. The subject
of this article is the inverse problem of above questions, the solution to this question
should have certain contribution in matrix theory and calculation. 
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INTRODUCTION 
 
 This paper get the following theorem 

 Theorem if  niai ,,1,0   is any plural, matrix equation 001
1

1  
 IaAaAaAa n

n
n

n  all the 

solution of the Matrix equation has the form[1,2] 
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 The “P” is invertible matrix, 
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 is Jordan block  ki ,.2,1  , 

 

 i is the solution of the N degree univariate polynomial equation   001
1

1  
 aaaaf n

n
n

n  

; And ir , as the stage of iJ , is no more than i , which is the root of the multiplicity of the   0f .  

 
EMPRICAL STUDY 

 
 In order to prove this theorem, we need to prove the following lemma firstly. 
 Lemma 1 Set A  as n  stage phalanx, there is invertible matrix P makes[3] 
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 kJJJ ,,, 21   as Jordan block 

 
 Prove see in Page45～47. 

 Lemma 2 if 
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J is r  stage Jordan block, k  is Positive integer, then for any positive integer k  

has  
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 Prove using mathematical induction card 
 We can get lemma 3 from lemma 2 directly. 

 Lemma 3 If   01
1

1 aaaaf n
n

n
n  

    is Complex coefficients polynomial, J  is r  stage 

Jordan block, 
 Then, 
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 Lemma 4 if 0 is the multiple solution of r , which is the solution of   001
1

1  
 aaaaf n

n
n

n   , 

then         00
1

00    rfff  , 

 But 
    00 rf . 

 Prove is omit. 
 From lemma 3 and lemma 4, we can get: 

 Lemma 5 The Jordan block 
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J  to meet the Matrix equation 

001
1

1  
 IaAaAaAa n

n
n

n  and the necessary and sufficient condition is:  is the solution of 

  001
1

1  
 aaaaf n

n
n

n   ，and the stage J  is no more than the multiple number of 0 , 

which is the solution of   0f . 

 
CONCLUSIONG 

 

 Sufficiency. If 12
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, and kJJJP ,,,, 21   as the established condition of the theorem 

      021  kJfJfJf  , so 
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 Necessity. If matrix A  meets   001
1

1  
 IaAaAaAaAf n

n
n

n , we can get the following 

information from the lemma 1 exiting the invertible matrix P. 
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 So,       021  kJfJfJf  , from lemma 5, kJJJ ,,, 21  meet the condition of the 

 Lemma. 
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