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ABSTRACT

A combinatorial enumeration using the unit-subduced-cycle index approach with symmetry chararacterisation is
carried out for homopolysubstituted [3.3]-paracyclophane derivatives having the empirical formula ¢;C¢Hg X, where X is a

non isomerisable ligand and where the greek ¢ symbol represents the hydrogen depleted benzene ring.

Key words: Homopolysubstitution, [3.3]-paracyclophane, Unit-subduced-cycle index, Coset representation, Subduction,
Isomer count matrix, Degenerate subsymmetry.

INTRODUCTION

The [3.3] PCP is is a polycyclic hydrocarbon considered as a pivotal structure, which is intermediate
in ring size between [2.2] PCP, where ring strain and transannular effects are pronounced and [4.4] PCP
where these effects are reduced'. The satisfactory routes for its preparation use the acyloin ring closure® or
the solvolytic ring expansion from [2.2] PCP* and its chemical and physical properties have been reported in
the literature™.

The focus of this study is to present a combinatorial enumeration detailing the symmetries of stereo
and position isomers of homopolysubstituted-[3.3]-paracyclophane (Ho[3.3]PCP) derivatives symbolized by

the empirical formula ¢, C¢Hq Xq,, where ¢ represents the hydrogen depleted benzene ring and the subscripts
q, and q, are respectively the numbers of unsubstituted hydrogen atoms and the degree of homopoly-

substitution with non isomerisable ligands of type X.

Mathematical formulation of the combinatorial method

Let us consider Fig. 1 as the tridimensional graph or stereograph of the parent [3.3] PCP, which has
been oriented according to the convention used by Ron and Schnepp’.
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Fig. 1: Stereograph of [3.3]-PCP
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In accordance with the results of previous structural studies®, we assign to this representation the

symmetry point group Day. This abelian group’ consists of 8 symmetry operations listed in Eq. 1:

Don = {1, Cx(2), Cay), Cax)s Oxy)s 1> Oyz)s O(xz) b

and partitioned into 8 equivalence classes given in Eq. 2:

{E} {Con )i 1Cow}s {Camts 1Coxyts {1} {04a)s 10k}

(D)

Q)

These latter generate a set of 5 chiral subgroups comprising C,,C,,C,,C}, and D, and a second set
of 11 achiral subgroups which are C_,C,,C.,C,,C,,,C,,,C,,,C,,,C,,,C,, and Dy, given in Table 1 with

their respective symmetry operations.

Table 1: Subgroups of D;;

Subgroups Symmetries opérations Chirality
C {I} Chiral
G, {L, Cono} {L, Capy} {L, Coro} Chiral
C, {L, Coo} Chiral
C, {L, Coo} Chiral
G {L, oy} Achiral
C, {L oy} Achiral
C. {L o} Achiral
Ci {1,i} Achiral
D, {1, Cay, Coyy, Copo} Chiral
Coy {L, Co(), O(y2)> Oxa)} Achiral
C,, {L, Ca(y), Oxy)s Oy) Achiral
C,, {L, Capx), Oxy)» Oxn) Achiral
Can {L, Ca), Oxy)» 1} Achiral

Cont...
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Subgroups Symmetries opérations Chirality
CYZh {L Cz(y)’ O(xz), i} Achiral
Ca, {L, Cago, Oy, 1} Achiral
Don {L, Ca2), Cary), Carx)s O(xy)s 1y Oiy2)s O} Achiral

These 16 subgroups construct a non redundant set of subgroups'®!" for Dy, denoted SSGp,,,, which is
given in Eq. 3:

$8Gny, = {C,,C,,C;,C,,C,, C,, C,,C;, D, €y, €y, , sy, Cy, Gy, Cy, Dy } (3

The elements of the complete set of coset representations for Dy, denoted SCRp,,, which are in a
univoque correspondence with the elements of SSGp,, are listed in Eq. 4:

Dy, (/C1), Dy, (/C,), Dy, (1 C,), Dy, (1 C3), Doy (7 C,), Dy (/ C,), D, (/ CY),
SCRpy, = D34, (/ C). Dy (/D3), Dy (/ €, ). Dy (/ €, ), Dy (1 C, ), Dy (/ €1 ), Dy (/ Cpy), (4
D2h(/ C;h)’DZh(/DZh)

The term designating each coset representation includes the global symmetry D, followed by a
subgroup G; € SCRp,,. The explicit forms of these coset representations are given as follows:

D,,(/C)) =C, 1+ C,Cyy + C,Cyyy + C,Cypyy + Ci0y, +C, i +C 0, + Ci0,) (5
D,,(/C,)=C, 1+ C,Cy,, +C,0,,, +C,0, ...(6)
D,,(/C,)=C, 1+ C,C,,, +Cyo,, + Gy (7)
D,,(/C;)=C, 1+ C,Cy,, +Coo,, + Cii ..(8)
D,,(/C,)=C,1+C,C,, +C,Cyy, +C,Cyy .9
D,, (/C;) = C; 1+ C,C,, + C,Cy, + C,Cyy ...(10)
D,, (/C;) =C 1+ C.C,,, + C.Cy, +C.Cy, (1)
D,,(/C;)=C; 1+ C,Cy, +C,Cy, +C,Cy (12)
D, (/Cy,)=C,, 1+ C,,Cy, ...(13)
D,,(/Cy,) =C,, 1+C,,Cy,, (14
D,,(/C,,) =C,, 1+C,,Cy,, ...(15)

D, (/Cy) =Cyy 1+C,,Cy ...(16)

D,, (/Cyy) =Cy 1+ C,Cy, ..(17)

D,,(/C3) =Cy, I+C;hC2(z) ...(18)
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By multiplying the right hand side terms of Eqs. 5-20 by each symmetry operation of D, we
permute the elements of each CR. Then, we obtain a row vector of marks assign to a CR by counting
invariant elements related to each subgroup. The sixteen row vectors of marks generated by these operations
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D,,(/D,)=D, 1+D,o,,,

D2h (/Dzh) = D2h I

form the Table of marks for Dy, denoted Mp,,, which is given hereafter:

Lol NS NS R NS T NS I (S I (S T (S T S L . L e o)

— O O N O NN O O o o O kO

— O N O O N N O O o O o b~ o O
—_ N O O N O O NN OO o O ko o 0o

i = =R =T S R S T R e RN e RN e R e Y = R = o R )

N O O O NN O O kO O O O O

— O N O N O N OO RO O O O O O

— N NN OO O O RO OO O O O O

—_ O O O O O O N O O o O o o o o

—_ O O O O O N O OO o o o o o o
—_ O O O O N0 O O O o O o o o o
— O O O N O O O O O O o o o o o
— O O N O OO O O O o0 O o o o o
—_— O N O O O OO0 O O o O o o o o
— N O O OO O O O O o o o o o o
—_ O O O O O O O O O o o o o o o

The corresponding inverse of this mark table denoted M, is obtained from Eq. 21 :

Mpa, M_Dth =1

where [ represents the 16 x 16 identity matrix.

/8
18
18
-1/8
-1/8
-1/8
-1/8
-8
Dn | 1/4
1/4
1/4
1/4
1/4
1/4
1/4
-1

0 0 0
/4 0 0
0 14 0
0 0 14
0 0 0
0 0 0
0 0 0
0 0 0
—1/4 -1/4 -1/4
-4 0 0
0 -1/4 0
0 0 -14
-1/4 0 0
0 -4 0
0 0 -4
V2 12 12

0o 0 0 0
0O 0 0 0
0o 0 0 0
0 0 0 0
4 0 0 0
0 14 0 0
0 0 14 0
0 0 0 14
0O 0 0 0
0 -4 -1/4 0
-4 -1/4 0 0
-4 0 -4 0
0 0 0 -4
0 0 -4 -4
0 2 0 -4
2 12 12 12

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1/2 0 0 0 0 0 0
0 1/2 0 0 0 0 0
0 0 1/2 0 0 0 0
0 0 0 1/2 0 0 0
0 0 0 0 1/2 0 0
0 0 0 0 0 1/2 0
0 0 0 0 0 0 1/2

-2 -2 -2 -2 -2 -2 -1)2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
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The 20 hydrogen atoms of the parent [3.3]-PCP depicted in Figure 1 by alphabetical and numerical
labels constitute 3 distinct sets of equivalent atoms or orbits A, A, and A; given hereafter:

A={1,2,4512.4,5, A,={3,6,3,6'and A;={a,b,c.d,a’b',c’,d'}

To assign an appropriate CR to A;, A, and As;, we find the largest subgroup that keeps each orbit
invariant. The subgroup C1 keeps all the elements of A; and A; unchanged. Therefore, the coset

representation governing A; and A; is denoted Dy, (/C;) and that one governing A, is denoted Day(/C. ).

RESULTS AND DISCUSSION

The subduction of coset representation is a mathematical proce dure largely discussed by Fujita'*"?.

In this paper, we have operated the subductions of the coset representation Dy,(/C;) and Dy (/C,) by all
subgroups of D,;,. These operations of subduction are symbolized by Eq. 22 and 23:

D,,(/C){ G, =BG,(/C) -(22)
D,,(/C)¥ G, =v,G,(/C)) ...(23)

where B; and y; are positive integer numbers and G; € SSGp,,. The results obtained are given in

column 1 and 2 of Table 2. Then we use Eq. 24 and 25 to transform the term in the right hand side of Eq. 22
and 23, respectively as follows:

p:G;(/C) — Sgi ...(24)
G (/G;) > S ...(25)

In these expressions s§1 and S{‘l are respectively unit-subduced-cycle-index (USCI) having the

superscripts i and y; previously defined, the subscripts d, = % and k; = % The notations |Gi
1

, Gj| and

J

|C1| are the cardinalities of these respective subgroups. The USCIs obtained are reported in columns 3, 4
and 5 of Table 2 for A;, A; and A3, respectively. The product SSI .Sg‘i .Sy of different USClIs in each row
gives rise to the term Siﬁi”i (if d; = k) or Sﬁ?i Sz‘ (if d; # k;) which is the global USCI for the subgroup

considered. For example the global USCI for the subsymmetry C; is:s} xs; xs¥ =s>°.

Table 2: Subductions of D,,(/C;) and Dy(/ C;') and resulting USCIs

Subductions Aq Ay As;  Global USCI
D, (/C){ C,=8C,(/C)) D, (/C.)4 C, =4C,(/C)) s S} s S
D,,(/C) ¥ C, =4C,(/C)) D,,(/CH¥ C, =2C,(/C)) S, S S, Sy

Cont...
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Subductions Aq Ay A;  Global USCI
D, (/C)¥ C, =4C,(/C)) D, (/C)H{ C,=2C,(/C)) s s s Sy
D, (/C){ C, =4C,(/C,)) D, (/CHI C,=2C,(/C)) s s S Sy
D, (/C){ C, =4C,(/C)) D, (/C)¥ C, =2C,(/C)) s s S Sy
D, (/C)H{ C, =4C,(/C)) D, (/C)¥ C, =2C.(/C)) s s? S Sy
D, (/C)¥ C. =4C.(/C,) D, (/C)H{ C.=2C.(/C) S S S St s!
D, (/C){ C,=4C,(/C)) D, (/C)¥ C, =2C,(/C)) S S? S S
D, (/C,){ D, =2D,(/C)) D, (/C)¥D,=D,(/C,) S: S! S? S
D, (/C){ C,, =2C,,(/C)) D, (/C)H¥ C,, =C,,(/C)) S: S S; S: S
D, (/CHVC,, =4C,(/C))  D,(CHLC,, =Co(C)  S§ Sy S S3
D, (/CH¥C,, =2C,(/C))  DLUCHOYC,=C,0C)  S; 85 8 S: S
D, (/C){VC,, =2C, (/C,)  D,(CHIC, =C, (/IC) S: S! S? S3
D, (/C){ C,, =2C,, (/C)) D, (/CH{ C,, =C,, (/C) S: s S? S} S?
D, (/C)Y C,, =2C,, (/C,) D, (/CHLC, =C,(/C,)) s? S, S: S;
D, (/C){ C,, =D, (/C)) D, (/CH{ C,, =C, (/C)) St S! S S: S,

20
To obtain the generating function F(Xql )= ZAquq‘ from the USCI approach, we have made the
q] =0

following transformations given in Eqs. 26-27 for each subsymmetry G; € Dyy:

20
G, —> sy xsp =(1+x")P (1+x")" = ZAquq‘ =Fx™) ...(26)
q1:0

where 0<q, <2B,d; + Ak, and 2B,d; + 1k, =20

20

or G, > s xsll = (1+xM)P1 =3 ATXY = F(X™) .27
q=0

where 0<q, <2B,d; +1,d; and 2B,d; + A, d;, =20

The following generating functions have been obtained:

C,—>s(1+x)" =x" +20x" +190x"* +1140x'" + 4845x'® +15504x " +38760x'* +77520x"
+125970x" +167960x"" +184756x" +167960x° +125970x* + 77520x’
+38760x° +15504x° + 4845x”* +1140x° +190x” + 20x +1



Acta Chim. Pharm. Indica: 3(3), 2013 207

C,,C,,C,,C,,C.,C, »sy - (1+x7)"=x" +10x"* +45x"° +120x"* +210x"* + 252x"* + 210x" +120x°

+45x% +10x* +1

s. >sost > (1+x)  (1+x)" =x™ +4x"” +14x"* +36x"7 +77x"° +144x" +232x" +336x"
+434x" +504x" +532x"0 +504x° +434x" +336x
+232x°% +144x° + 77x* +36x° +14x% +4x +1

D,,C,,,C,,,Co = s; = (1+x*)’ =x™ +5x"° +10x"” +10x* +5x* +1

D,,.C,,.Cy = siss &> (1+xH  (1+x%)? =x™ +2x"* +5x"° +8x" +10x"? +12x"°

+10x° +8x° +5x* +2x* +1
and similarly D,, —s;s}, - (1+x")? (1+x") =x" +x"" +2x"” + 2x* +x* +1

The coefficients of the aforementioned polynomials are collected together to form the fixed point

matrix FPM (qu) given hereafter :

c, ¢, C C ¢ C C ¢ DpC,C,C,C,C,C.,D,

1 1 (I 11 1 1 1 1 11
x|l 20 0 0 0 0 0 4 0 0 0 0 0 0 0 0 O
x| 190 10 10 10 10 10 14 10 0 2 0 2 0 2 0 0
x| 140 0 0o 0 0 0 3 0 0 0 0 0 0 0 0 0
x' | 4845 45 45 45 45 45 77 45 5 5 5 5 5 5 5 1
15504 0 0 0 0O O 14 0 0 0 0 0 0 0 0 0
x* | 38760 120 120 120 120 120 232 120 0 8 0 8 0 8 0 0
x| 77520 0 0 o0 0 0 33 0 0 0 0 0 0 0 0 0
x* [[125970 210 210 210 210 210 434 210 10 10 10 10 10 10 10 2
x|1679¢0 0 0 0 0 0 504 0 0 0 0 0O 0O 0 0 0
FPM:(x*)=| x" || 184756 252 252 252 252 252 532 252 12 12 12 0
x"|[167960 0 0 0 0 0 504 0 0 0 0O 0 0 0 0 0
x (1125970 210 210 210 210 210 434 210 10 10 10 10 10 10 10 2
x“[775200 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0
x| 38760 120 120 120 120 120 232 120 0 8 0O 8 0 8 0 0
x* 15504 0 0 0 0 O 14 0 0 0 0 0 0 0 0 0
x|| 4845 45 45 45 45 45 77 45 5 5 5 5 5 5 5 1
x| 1140 0 0o 0 0 0 3 0 0 0 0 0 0 0 0 0
x*| 190 10 10 10 10 10 14 10 0 2 0 2 0 2 0 0
x| 20 0 0 0 0 0O 4 0 0 0 0 0 0 0 00
1 111 11 111 1 11 11

The corresponding isomer count matrix I[CM (qu ) is derived from Eq. 26:

-1
D2n

IcM (xM) =FPM (X").M ...(28)
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where M

n,, represent the inverse of the mark table aforementioned. The result obtained is a

rectangular matrix of itemized isomers numbers given hereafter with respect to each sub symmetry of Dyj,.

, C, C, C, C, C . . D, C,C, C,C,C, C,D,

1 0 0o 0 0 0 o0 O O O0O0OO0OO0OO0OTO0OTO0OT?1
X 2 0o o0 0 0 o0 1 O 0O0O0OO0OO0OO0O0O
x* 16 2 2 2 2 2 2 2 0202022500
x’ 33 0 0 0 0 O 9 0 O0O0O0OO0O0O0O0OO0O
x*| 570 8 8 8 8 8 16 8 2 2 2 2 2 2 21
x*{1920 0 0 0 0 O 36 0 00 0 0 O0O0O0O0
x° || 4732 28 28 28 28 28 52 28 0 4 0 4 0 4 0 O
x"||948 0 0 0 0 O 8 0O 0 0 0 O OO0 0O
x* || 15550 46 46 46 46 46 102 46 4 4 4 4 4 4 4 2
x> 1120932 0 0 0O 0O O 126 0 0 0 0 0 0 0 0 O
ICM(x")=| x* || 22848 60 60 60 60 60 124 60 0 6 0 6 0 6 0 O
x"]20932 0 0 0 O 0 126 0 0 0 0 0 0 0 0 O
x? || 15550 46 46 46 46 46 102 46 4 4 4 4 4 4 4 2
x| 948 0 0 0 O O 8 0O 0 0 0 0O OO0 0O
x" | 4732 28 28 28 28 28 52 28 0 4 0 4 0 4 0 O
x11920 0 0 O O O 36 0 0 0 0 0 0 0 0 O
x| 570 8 8 8 8 8 16 8 2 2 2 2 2 2 21
x| 133 0 0 0 0 O 9 0 0O0O0O0O0OO0OOO
x'* 16 2 2 2 2 2 2 2 0202022500
x" 0o o0 0 0 o0 1 O 0O0O0OO0OO0OO0O0OO
x* 0o 0 0 0 O O O 0O0O0OO0OO0OO0TO0OT1

Symmetry characterization of enumerated Ho(3.3) PCPs.

The chirality fittingness of Ho(3.3) PCPs is governed by the parity of the degree of homopoly-
substitution q, according to the following rules :

q, Odd: For q, odd only C;-chiral isomers and C; -achiral isomers are formed for the system
¢2C6Hq0qu .

q, Singly even: If the degree of homopolysubstitution q, is singly even in the system

¢2C6Hq0X 4 the occurrence of chiral isomers is allowed for the subsymmetries C,,C,,C,,C, where C, is

the dominantclass and CZ,C;,C; is a triply degenerate second class. In this case Aq (C,) = A4 (Cy) =
Aq (C2) =Aq (Ca).

When q,> 2, is singly even the occurrence of achiral isomers is allowed for the subsymmetries

C..C.,C.,C,,C,,,C,,,C,,, where C, is the dominant and where C,,Cs,C; and C,,,Ca,,C, are respectively
the first and the second triply degenerate classes of subsymmetries.

Hence, A q, (C;)ZACII (Cs)=Aq (C)) =Aq (C)=Aq (Cyy)=Ag (C) =Aq (Can).



209

sdDd [€°¢] paImnsqnsipowoy jo sydeas [eayoe 1 pue [earyd 7z sunpudsdad sydeasd aenddojA :7 ‘31

[earyoe- 125 7 earyae- 125 z |eaiyoe-*iy g [eliyoe-'oz

T

Q
H
L

Q vl

Acta Chim. Pharm. Indica: 3(3), 2013
Qunin®



210 P. Issofa et al.: Combinatorial Enumeration and Symmetry....

q: Doubly even: If the degree of homopolysubstitution q, is doubly even in the system ¢,C,H qOX 4

the occurrence of chiral isomers is allowed for the subsymmetries C,,C,,C,,C, and D,. The C-chiral
isomers are dominant over C,,C,,C, which constitute a triply degenerate second class and D, the third

class. In this case A, (C)=Aq, (C))=Aq, (C2)=Aq, (C2)=A,, (D,).

The occurrence of achiral isomers is allowed for the following 11 subsymmetries: Cs,Cs,
C:,C,,C,,,Ch,C%,Cy,, Con, Con, D, , which may be classified in accordance with the magnitude of the
integer value Ay, into 4 distinct equivalent classes as follows: {C:},{Cs,Cs,C,}, {C,,,C5%,Cs,C,,,
Chn, Ch} and {Dy,}. The results given in the rows of ICM (X') show that the abundance of stereo and
position isomers for ¢p,CsHqoXq1 decrease in the following order: Aq (Ci)=Aqu{Cs, Cs,C,} = Aq {Csy,
{C%,Co, Gy, Con, Con } = Aqi (Dy,).

These assumptions are verified by the results given in the rows of the ICM (qu) for any q, odd or

even in the system ¢>C¢Hq Xq,. It is to be noticed that for q,= 2 the coefficients of X" in the third row of the

ICM (qu) reveals that the system ¢,C¢HsX, exhibits 36 homodisubstituted [3.3] paracyclophane
derivatives and 16 of them belong to C; while only 2 are assigned to each subsymmetry classified in the

following 3 degenerate classes {C,,C,,Cs}, {Cs,Cs,Cs,Cit, {Cyy,Chy,Coyt. The molecular graphs for
these stereoisomers are given in Fig. 2, where one can depict that inter annular homodisubstitution yields

derivatives having their 2 ligands in position pseudo-meta (18), pseudo ortho (22), pseudo gem (28) and
pseudo para (30).

CONCLUSION

The enumeration of Ho(3.3) PCPs derivatives have shown that the chirality of this polycyclic
hydrocarbon is controlled by the parity of the degree of homopolysubstitution as follows :
- An odd degree of homopolysubstitution yields only C;-chiral isomers and C; achiral isomers.

- A singly even degree of homopolysubstitution yields:

(i) A dominant class of C;-chiral isomers together with 3 degenerate subsymmetries C,,C5,C5

having respectively the same number of chiral isomers.
(i1)) A dominant class of C;achiral isomers together with 3 degenerate subsymmetries Cs,Cs,C,
with equivalent number of achiral isomers.

(iii)) A doubly even degree of homopolysubstitution yields:

(iv) A dominant class of C,-chiral isomers together with 3 degenerate classes C,,C>,C5 - and
1 class of D, chiral isomers.
(v) A dominant class of C; -achiral isomers together with 3 degenerate classes {C;,Cs,Ci}

followed by 6 degenerate classes {C,,,Cx,C%,Con,Cm,Co} and a single {Dj,} class of

achiral isomers.
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