

Acta Chimica & Pharmaceutica Indica

Acta Chim. Pharm. Indica: 3(3), 2013, 201-211 ISSN 2277-288X

COMBINATORIAL ENUMERATION AND SYMMETRY CHARACTERIZATION OF HOMO POLYSUBTITUTED[3.3]-PARACYCLOPHANE DERIVATIVES

PATOUOSSA ISSOFA, A. EMADAK and ROBERT MARTIN NEMBA^{*}

Faculty of Sciences, Laboratory of Physical and Theoretical Chemistry, University of Yaounde, P. O. Box 812, Yaounde I, Cameroon

(Received : 22.07.2013; Revised : 27.07.2013; Accepted : 29.07.2013)

ABSTRACT

A combinatorial enumeration using the unit-subduced-cycle index approach with symmetry chararacterisation is carried out for homopolysubstituted [3.3]-paracyclophane derivatives having the empirical formula $\phi_2 C_6 H_{q_0} X_{q_1}$ where X is a non isomerisable ligand and where the greek ϕ symbol represents the hydrogen depleted benzene ring.

Key words: Homopolysubstitution, [3.3]-paracyclophane, Unit-subduced-cycle index, Coset representation, Subduction, Isomer count matrix, Degenerate subsymmetry.

INTRODUCTION

The [3.3] PCP is is a polycyclic hydrocarbon considered as a pivotal structure, which is intermediate in ring size between [2.2] PCP, where ring strain and transannular effects are pronounced and [4.4] PCP where these effects are reduced¹. The satisfactory routes for its preparation use the acyloin ring closure^{2,3} or the solvolytic ring expansion from [2.2] PCP⁴ and its chemical and physical properties have been reported in the literature^{5,6}.

The focus of this study is to present a combinatorial enumeration detailing the symmetries of stereo and position isomers of homopolysubstituted-[3.3]-paracyclophane (Ho[3.3]PCP) derivatives symbolized by the empirical formula $\phi_2 C_6 H_{q_0} X_{q_1}$, where ϕ represents the hydrogen depleted benzene ring and the subscripts q_0 and q_1 are respectively the numbers of unsubstituted hydrogen atoms and the degree of homopolysubstitution with non isomerisable ligands of type X.

Mathematical formulation of the combinatorial method

Let us consider Fig. 1 as the tridimensional graph or stereograph of the parent [3.3] PCP, which has been oriented according to the convention used by Ron and Schnepp⁷.

Available online at www.sadgurupublications.com

^{*}Author for correspondence; E-mail: robertmartinnemba@yahoo.com

Fig. 1: Stereograph of [3.3]-PCP

In accordance with the results of previous structural studies⁸, we assign to this representation the symmetry point group D_{2h} . This abelian group⁹ consists of 8 symmetry operations listed in Eq. 1:

$$D_{2h} = \{I, C_2(z), C_{2(y)}, C_{2(x)}, \sigma_{(xy)}, i, \sigma_{(yz)}, \sigma_{(xz)}\} \qquad \dots (1)$$

and partitioned into 8 equivalence classes given in Eq. 2:

$$\{E\}; \{C_{2(z)}\}; \{C_{2(y)}\}; \{C_{2(x)}\}; \{C_{2(xy)}\}; \{i\}; \{\sigma_{(yz)}\}; \{\sigma_{(xz)}\}$$
...(2)

These latter generate a set of 5 chiral subgroups comprising $C_1, C_2, C_2, C_2^{'}$, and D_2 and a second set of 11 achiral subgroups which are $C_s, C_s^{'}, C_s^{'}, C_{2\nu}, C_{2\nu}, C_{2\nu}^{'}, C_{2h}, C_{2h}^{'}, C_{2h}^{'}$ and D_{2h} given in Table 1 with their respective symmetry operations.

Subgroups	Symmetries opérations	Chirality
C_1	{I}	Chiral
C_2	$\{I,C_{2(x)}\}\ \{I,C_{2(y)}\}\ \{I,C_{2(x)}\}$	Chiral
Ċs	$\{I,C_{2(x)}\}$	Chiral
$C_2^{"}$	$\{I,C_{2(x)}\}$	Chiral
Cs	$\{I, \sigma_{(xy)}\}$	Achiral
Ċs	$\{I,\sigma_{(xy)}\}$	Achiral
$C_s^{"}$	$\{I,\sigma_{(yz)}\}$	Achiral
C_i	{I, i}	Achiral
D_2	$\{I,C_{2(z)},C_{2(y)},C_{2(x)}\}$	Chiral
$C_{2\nu}$	$\{I,C_{2(z)},\sigma_{(yz)},\sigma_{(xz)}\}$	Achiral
$C'_{2\nu}$	$\{I,C_{2(y)},\sigma_{(xy)},\sigma_{(yz)}\}$	Achiral
$C_{2\nu}^{"}$	$\{I,C_{2(x)},\sigma_{(xy)},\sigma_{(xz)}\}$	Achiral
C_{2h}	$\{I,C_{2(z)},\sigma_{(xy)},i\}$	Achiral

Table 1: Subgroups of D_{2h}

Subgroups	Symmetries opérations	Chirality
C'_{2h}	$\{I,C_{2(y)},\sigma_{(xz)},i\}$	Achiral
$C_{2h}^{"}$	$\{I, C_{2(x)}, \sigma_{(yz)}, i\}$	Achiral
D_{2h}	$\{I,C_{2(z)},C_{2(y)},C_{2(x)},\sigma_{(xy)},i,\sigma_{(yz)},\sigma_{(xz)}\}$	Achiral

These 16 subgroups construct a non redundant set of subgroups^{10,11} for D_{2h} denoted $SSG_{D_{2h}}$, which is given in Eq. 3:

$$SSG_{D_{2h}} = \{C_1, C_2, C_2', C_3', C_s, C_s', C_s', C_1, D_2, C_{2v}, C_{2v}', C_{2v}', C_{2h}, C_{2h}', C_{2h}', D_{2h}\} \qquad \dots (3)$$

The elements of the complete set of coset representations for D_{2h} denoted $SCR_{D_{2h}}$, which are in a univoque correspondence with the elements of $SSG_{D_{2h}}$ are listed in Eq. 4:

$$SCR_{D_{2h}} = \begin{cases} D_{2h}(/C_{1}), D_{2h}(/C_{2}), D_{2h}(/C_{2}'), D_{2h}(/C_{2}'), D_{2h}(/C_{s}), D_{2h}(/C_{s}'), D_{2h}(/C_{s}'), D_{2h}(/C_{s}'), D_{2h}(/C_{s}'), D_{2h}(/C_{s}'), D_{2h}(/C_{s}'), D_{2h}(/C_{s}'), D_{2h}(/C_{2h}'), D_{2h}(/$$

The term designating each coset representation includes the global symmetry D_{2h} followed by a subgroup $G_i \in SCR_{D_{2h}}$. The explicit forms of these coset representations are given as follows:

$$D_{2h}(/C_1) = C_1 I + C_1 C_{2(x)} + C_1 C_{2(y)} + C_1 C_{2(x)} + C_1 \sigma_{(xy)} + C_1 i + C_1 \sigma_{(yz)} + C_1 \sigma_{(xz)} \qquad \dots (5)$$

$$D_{2h}(/C_2) = C_2 I + C_2 C_{2(y)} + C_2 \sigma_{(xy)} + C_2 \sigma_{(yz)} \qquad \dots (6)$$

$$D_{2h}(/C'_{2}) = C'_{2}I + C'_{2}C_{2(z)} + C'_{2}\sigma_{(xy)} + C'_{2}i \qquad \dots (7)$$

$$D_{2h}(/C_2^{"}) = C_2^{"} I + C_2^{"}C_{2(z)} + C_2^{"}\sigma_{(xy)} + C_2^{"}i \qquad \dots (8)$$

$$D_{2h}(/C_s) = C_s I + C_s C_{2(z)} + C_s C_{2(y)} + C_s C_{2(x)} \qquad \dots (9)$$

$$D_{2h}(/C'_{s}) = C'_{s}I + C'_{s}C_{2(z)} + C'_{s}C_{2(y)} + C'_{s}C_{2(x)} \qquad \dots (10)$$

$$D_{2h}(/C_s^{"}) = C_s^{"}I + C_s^{"}C_{2(z)} + C_s^{"}C_{2(y)} + C_s^{"}C_{2(x)} \qquad \dots (11)$$

$$D_{2h}(/C_i) = C_i I + C_i C_{2(z)} + C_i C_{2(y)} + C_i C_{2(x)} \qquad \dots (12)$$

$$D_{2h}(/C_{2v}) = C_{2v} I + C_{2v}C_{2(y)} \qquad \dots (13)$$

$$D_{2h}(/C'_{2v}) = C'_{2v}I + C'_{2v}C_{2(z)} \qquad \dots (14)$$

$$D_{2h}(/C'_{2v}) = C''_{2v} I + C''_{2v}C_{2(z)} \qquad \dots (15)$$

$$D_{2h}(/C_{2h}) = C_{2h} I + C_{2h}C_{2(y)} \qquad \dots (16)$$

$$D_{2h}(/C'_{2h}) = C'_{2h} I + C'_{2h}C_{2(z)} \qquad \dots (17)$$

$$D_{2h}(/C_{2h}^{"}) = C_{2h}^{"} I + C_{2h}^{"}C_{2(z)} \qquad \dots (18)$$

P. Issofa et al.: Combinatorial Enumeration and Symmetry....

$$D_{2h}(/D_2) = D_2 I + D_2 \sigma_{(xy)}$$
 ...(19)

$$D_{2h}(/D_{2h}) = D_{2h} I$$
 ...(20)

By multiplying the right hand side terms of Eqs. 5-20 by each symmetry operation of D_{2h} , we permute the elements of each CR. Then, we obtain a row vector of marks assign to a CR by counting invariant elements related to each subgroup. The sixteen row vectors of marks generated by these operations form the Table of marks for D_{2h} denoted $M_{D_{2h}}$, which is given hereafter:

	(8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)
	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0
м	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
$M_{D_{2h}} =$	2	2	2	2	0	0	0	0	2	0	0	0	0	0	0	0
	2	2	0	0	0	2	2	0	0	2	0	0	0	0	0	0
	2	0	2	0	2	2	0	0	0	0	2	0	0	0	0	0
	2	0	0	2	2	0	2	0	0	0	0	2	0	0	0	0
	2	2	0	0	0	0	0	2	0	0	0	0	2	0	0	0
	2	0	2	0	0	0	2	2	0	0	0	0	0	2	0	0
	2	0	0	2	0	2	0	2	0	0	0	0	0	0	2	0
	(1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1)

The corresponding inverse of this mark table denoted M_{D2h}^{-1} is obtained from Eq. 21 :

$$M_{D2h} M_{D2h}^{-1} = I \dots(21)$$

where I represents the 16 x 16 identity matrix.

	(1/8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	
	-1/8	1/4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	-1/8	0	1/4	0	0	0	0	0	0	0	0	0	0	0	0	0	
	-1/8	0	0	1/4	0	0	0	0	0	0	0	0	0	0	0	0	
	-1/8	0	0	0	1/4	0	0	0	0	0	0	0	0	0	0	0	
	-1/8	0	0	0	0	1/4	0	0	0	0	0	0	0	0	0	0	
	-1/8	0	0	0	0	0	1/4	0	0	0	0	0	0	0	0	0	
M ⁻¹ -	-1/8	0	0	0	0	0	0	1/4	0	0	0	0	0	0	0	0	
$D_{D_{2h}} =$	1/4	-1/4	-1/4	-1/4	0	0	0	0	1/2	0	0	0	0	0	0	0	
	1/4	-1/4	0	0	0	-1/4	-1/4	0	0	1/2	0	0	0	0	0	0	
	1/4	0	-1/4	0	-1/4	-1/4	0	0	0	0	1/2	0	0	0	0	0	
	1/4	0	0	-1/4	-1/4	0	-1/4	0	0	0	0	1/2	0	0	0	0	
	1/4	-1/4	0	0	0	0	0	-1/4	0	0	0	0	1/2	0	0	0	
	1/4	0	-1/4	0	0	0	-1/4	-1/4	0	0	0	0	0	1/2	0	0	
	1/4	0	0	-1/4	0	2	0	-1/4	0	0	0	0	0	0	1/2	0	
	(-1	1/2	1/2	1/2	1/2	1/2	1/2	1/2	-1/2	-1/2	-1/2	-1/2	-1/2	-1/2	-1/2	1)	

The 20 hydrogen atoms of the parent [3.3]-PCP depicted in Figure 1 by alphabetical and numerical labels constitute 3 distinct sets of equivalent atoms or orbits Δ_1 , Δ_2 and Δ_3 given hereafter:

$$\Delta_1 = \{1, 2, 4, 5, 1', 2', 4', 5'\}, \Delta_2 = \{3, 6, 3', 6'\} \text{ and } \Delta_3 = \{a, b, c, d, a', b', c', d'\}$$

To assign an appropriate CR to Δ_1 , Δ_2 and Δ_3 , we find the largest subgroup that keeps each orbit invariant. The subgroup C1 keeps all the elements of Δ_1 and Δ_3 unchanged. Therefore, the coset representation governing Δ_1 and Δ_3 is denoted D_{2h} (/C₁) and that one governing Δ_2 is denoted D_{2h} (/C["]_s).

RESULTS AND DISCUSSION

The subduction of coset representation is a mathematical proce dure largely discussed by Fujita^{12,13}. In this paper, we have operated the subductions of the coset representation $D_{2h}(/C_1)$ and $D_{2h}(/C_s)$ by all subgroups of D_{2h} . These operations of subduction are symbolized by Eq. 22 and 23:

$$D_{2h}(/C_1) \downarrow G_i = \beta_i G_i(/C_1)$$
 ...(22)

$$D_{2h}(/C_s') \downarrow G_i = \gamma_i G_i(/C_j)$$
 ...(23)

where β_i and γ_i are positive integer numbers and $G_i \in SSG_{D_{2h}}$. The results obtained are given in column 1 and 2 of Table 2. Then we use Eq. 24 and 25 to transform the term in the right hand side of Eq. 22 and 23, respectively as follows:

$$\beta_i G_i(C_1) \to S_{d_i}^{\beta_i} \qquad \dots (24)$$

$$\gamma_i G_i(/G_j) \rightarrow S_{k_i}^{\gamma_i}$$
 ...(25)

In these expressions $S_{d_i}^{\beta_i}$ and $S_{k_i}^{\gamma_i}$ are respectively unit-subduced-cycle-index (USCI) having the superscripts β_i and γ_i previously defined, the subscripts $d_i = \frac{|G_i|}{|C_1|}$ and $k_i = \frac{|G_i|}{|G_j|}$. The notations $|G_i|$, $|G_j|$ and

 $|\mathbf{C}_1|$ are the cardinalities of these respective subgroups. The USCIs obtained are reported in columns 3, 4 and 5 of Table 2 for Δ_1 , Δ_2 and Δ_3 , respectively. The product $S_{d_i}^{\beta_i} \cdot S_{d_i}^{\beta_i} \cdot S_{k_i}^{\gamma_i}$ of different USCIs in each row gives rise to the term $S_{d_i}^{2\beta_i+\gamma_i}$ (if $d_i = k_i$) or $S_{d_i}^{2\beta_i} \cdot S_{k_i}^{\gamma_i}$ (if $d_i \neq k_i$) which is the global USCI for the subgroup considered. For example the global USCI for the subsymmetry C_1 is: $s_1^8 \times s_1^4 \times s_1^8 = s_1^{20}$.

Table 2: Subductions of $D_{2h}(/C_1)$ and $D_{2h}(/C_s^{"})$ and resulting USCIs

Subdu	Δ_1	Δ_2	Δ_3	Global USCI	
$D_{2h}(/C_1) \downarrow C_1 = 8C_1(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{1} = 4C_{1}(/C_{1})$	\mathbf{S}_1^8	\mathbf{S}_1^4	S_1^8	S_{1}^{20}
$D_{2h}(/C_1) \downarrow C_2 = 4C_2(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{2} = 2C_{2}(/C_{1})$	S_2^4	\mathbf{S}_2^2	\mathbf{S}_2^4	S_{2}^{10}

Subdı	ictions	Δ_1	Δ_2	Δ_3	Global USCI
$D_{2h}(/C_1) \downarrow C_2 = 4C_2(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{2}^{'} = 2C_{2}^{'}(/C_{1})$	S_2^4	S_2^2	S_2^4	S_{2}^{10}
$D_{2h}(/C_1) \downarrow C_2^{"} = 4C_2^{"}(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{2}^{"}=2C_{2}^{"}(/C_{s}^{"})$	S_2^4	S_2^2	S_2^4	S_{2}^{10}
$D_{2h}(/C_1) \downarrow C_s = 4C_s(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{s} = 2C_{s}(/C_{1})$	S_2^4	S_2^2	S_2^4	S_{2}^{10}
$D_{2h}(/C_1) \downarrow C'_s = 4C'_s(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{s}^{'}=2C_{s}^{'}(/C_{1})$	S_2^4	S_2^2	S_2^4	S_{2}^{10}
$D_{2h}(/C_1) \downarrow C_s^{"} = 4C_s^{"}(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{s}^{"}=2C_{s}^{"}(/C_{s}^{"})$	S_2^4	S_1^4	S_2^4	$S_{2}^{8} S_{1}^{4}$
$D_{2h}(/C_1) \downarrow C_i = 4C_i(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{i} = 2C_{i}(/C_{1})$	S_2^4	S_2^2	S_2^4	S_{2}^{10}
$D_{2h}(/C_1) \downarrow D_2 = 2D_2(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow D_{2} = D_{2}(/C_{1})$	S_4^2	\mathbf{S}_4^1	S_4^2	S_4^5
$D_{2h}(/C_1) \downarrow C_{2v} = 2C_{2v}(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{2v} = C_{2v}(/C_{s}^{"})$	S_4^2	S_2^2	S_4^2	${f S}_{4}^{4}{f S}_{2}^{2}$
$D_{2h}(/C_1) \downarrow C'_{2v} = 4C'_{2v}(/C_1)$	$D_{2h}(/C_{s}^{"}) \downarrow C_{2v}^{'} = C_{2v}^{'}(/C_{1})$	S_4^2	\mathbf{S}_4^1	S_4^2	\mathbf{S}_4^5
$D_{2h}(/C_1) \downarrow C_{2v}^{"} = 2C_{2v}^{"}(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{2v}^{"} = C_{2v}^{"}(/C_{s}^{"})$	S_4^2	S_2^2	S_4^2	${f S}_{4}^{4}{f S}_{2}^{2}$
$D_{2h}(/C_1) \downarrow C_{2h} = 2C_{2h}(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{2h} = C_{2h}(/C_{1})$	S_4^2	\mathbf{S}_4^1	S_4^2	S_4^5
$D_{2h}(/C_1) \downarrow C'_{2h} = 2C'_{2h}(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{2h}^{'} = C_{2h}^{'}(/C_{s}^{"})$	S_4^2	S_2^2	S_4^2	${ m S}_{4}^{4}{ m S}_{2}^{2}$
$D_{2h}(/C_1) \downarrow C_{2h}^{"} = 2C_{2h}^{"}(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{2h}^{"} = C_{2h}^{"}(/C_{1})$	S_4^2	\mathbf{S}_4^1	S_4^2	S_4^5
$D_{2h}(/C_1) \downarrow C_{2h} = D_{2h}(/C_1)$	$D_{2h}(/C_{s}^{"})\downarrow C_{2h} = C_{2h}(/C_{s}^{"})$	\mathbf{S}_8^1	\mathbf{S}_4^1	\mathbf{S}_8^1	${f S}_{4}^2 \ {f S}_{4}^1$

To obtain the generating function $F(X^{q_1}) = \sum_{q_1=0}^{20} A_{q_1} X^{q_1}$ from the USCI approach, we have made the

following transformations given in Eqs. 26-27 for each subsymmetry $G_i \in D_{2h}$:

$$G_{i} \rightarrow s_{d_{i}}^{2\beta_{i}} \times s_{k_{i}}^{\gamma_{i}} = (1 + x^{d_{i}})^{2\beta_{i}} (1 + x^{k_{i}})^{\gamma_{i}} = \sum_{q_{1}=0}^{20} A_{q_{1}} X^{q_{1}} = F(X^{q_{1}}) \qquad \dots (26)$$

where $0 \le q_1 \le 2\beta_i d_i + \lambda_i k_i$ and $2\beta_i d_i + \lambda_i k_i = 20$

or

$$G_{i} \rightarrow s_{d_{i}}^{2\beta_{i}} \times s_{k_{i}}^{\gamma_{i}} = (1 + x^{d_{i}})^{2\beta_{i} + \gamma_{i}} = \sum_{q=0}^{20} A^{q_{1}} X^{q_{1}} = F(X^{q_{1}}) \qquad \dots (27)$$

where $0 \leq q_1 \leq 2\beta_i d_i + \lambda_i d_i$ and $2\beta_i d_i + \lambda_i d_i = 20$

The following generating functions have been obtained:

$$\begin{split} C_1 &\rightarrow s_1^{20} (1+x)^{20} = x^{20} + 20x^{19} + 190x^{18} + 1140x^{17} + 4845x^{16} + 15504x^{15} + 38760x^{14} + 77520x^{13} \\ &\quad + 125970x^{12} + 167960x^{11} + 184756x^{10} + 167960x^9 + 125970x^8 + 77520x^7 \\ &\quad + 38760x^6 + 15504x^5 + 4845x^4 + 1140x^3 + 190x^2 + 20x + 1 \end{split}$$

$$\begin{split} C_{2}, C_{2}^{'}, C_{2}^{'}, C_{s}^{'}, C_{i}^{'} \rightarrow s_{2}^{10} \rightarrow (1 + x^{2})^{10} = x^{20} + 10x^{18} + 45x^{16} + 120x^{14} + 210x^{12} + 252x^{10} + 210x^{8} + 120x^{6} \\ &\quad + 45x^{4} + 10x^{2} + 1 \end{split}$$

$$s_{s}^{''} \rightarrow s_{2}^{8}s^{4} \rightarrow (1 + x^{2})^{8} (1 + x)^{4} = x^{20} + 4x^{19} + 14x^{18} + 36x^{17} + 77x^{16} + 144x^{15} + 232x^{14} + 336x^{13} \\ &\quad + 434x^{12} + 504x^{11} + 532x^{10} + 504x^{9} + 434x^{8} + 336x^{7} \\ &\quad + 232x^{6} + 144x^{5} + 77x^{4} + 36x^{3} + 14x^{2} + 4x + 1 \end{split}$$

$$D_{2}, C_{2v}^{'}, C_{2h}, C_{2h}^{''} \rightarrow s_{4}^{5} \rightarrow (1 + x^{4})^{5} = x^{20} + 5x^{16} + 10x^{12} + 10x^{8} + 5x^{4} + 1 \\ D_{2v}, C_{2v}^{''}, C_{2h}^{'} \rightarrow s_{4}^{4}s_{2}^{2} \rightarrow (1 + x^{4})^{4} (1 + x^{2})^{2} = x^{20} + 2x^{18} + 5x^{16} + 8x^{14} + 10x^{12} + 12x^{10} \\ &\quad + 10x^{8} + 8x^{6} + 5x^{4} + 2x^{2} + 1 \end{split}$$

and similarly $D_{2h} \rightarrow s_8^2 s_4^1 \rightarrow (1 + x^8)^2 (1 + x^4) = x^{20} + x^{16} + 2x^{12} + 2x^8 + x^4 + 1$

The coefficients of the aforementioned polynomials are collected together to form the fixed point matrix FPM (X^{q_1}) given hereafter :

		C ₁	C ₂	C_2	$C_2^{"}$	C,	C's	C,"	C _i	\mathbf{D}_2 C	2 _{2v} C	' _{2v} C	$C_{2v}^{"}$ C	_{2h} C' ₂	\mathbf{C}_{2}	D ₂	h
	$\begin{pmatrix} 1 \end{pmatrix}$	(1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1)
	x	20	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0
	x ²	190	10	10	10	10	10	14	10	0	2	0	2	0	2	0	0
	x ³	1140	0	0	0	0	0	36	0	0	0	0	0	0	0	0	0
	X ⁴	4845	45	45	45	45	45	77	45	5	5	5	5	5	5	5	1
	x ⁵	15504	0	0	0	0	0	144	0	0	0	0	0	0	0	0	0
	X ⁶	38760	120	120	120	120	120	232	120	0	8	0	8	0	8	0	0
	x ⁷	77520	0	0	0	0	0	336	0	0	0	0	0	0	0	0	0
	x ⁸	125970	210	210	210	210	210	434	210	10	10	10	10	10	10	10	2
	x ⁹	167960	0	0	0	0	0	504	0	0	0	0	0	0	0	0	0
$FPM:(x^{q_1}) =$	X ¹⁰	184756	252	252	252	252	252	532	252	0	12	0	12	0	12	0	0
	x ¹¹	167960	0	0	0	0	0	504	0	0	0	0	0	0	0	0	0
	X ¹²	125970	210	210	210	210	210	434	210	10	10	10	10	10	10	10	2
	X ¹³	77520	0	0	0	0	0	336	0	0	0	0	0	0	0	0	0
	X ¹⁴	38760	120	120	120	120	120	232	120	0	8	0	8	0	8	0	0
	x ¹⁵	15504	0	0	0	0	0	144	0	0	0	0	0	0	0	0	0
	X ¹⁶	4845	45	45	45	45	45	77	45	5	5	5	5	5	5	5	1
	X ¹⁷	1140	0	0	0	0	0	36	0	0	0	0	0	0	0	0	0
	X ¹⁸	190	10	10	10	10	10	14	10	0	2	0	2	0	2	0	0
	x ¹⁹	20	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0
	$\left(\mathbf{x}^{20}\right)$	(1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1)

The corresponding isomer count matrix ICM (X^{q_1}) is derived from Eq. 26:

ICM
$$(X^{q_1}) = FPM (X^{q_1}) \cdot M_{D_{2h}}^{-1}$$
 ...(28)

where $M_{D_{2h}}^{-1}$ represent the inverse of the mark table aforementioned. The result obtained is a rectangular matrix of itemized isomers numbers given hereafter with respect to each sub symmetry of D_{2h} .

		C	C_2	C_2	$C_2^{"}$	C,	Ċ	$\mathbf{C}_{s}^{"}$	\mathbf{C}_{i}	\mathbf{D}_2	C_{2v}	C'_{2v}	C" _{2v}	C _{2h} C	י 2h	$C_{2h}^{"}I$	D _{2h}
	$\begin{pmatrix} 1 \end{pmatrix}$	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1`
	x	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	x ²	16	2	2	2	2	2	2	2	0	2	0	2	0	2	0	0
	X ³	138	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0
	x ⁴	570	8	8	8	8	8	16	8	2	2	2	2	2	2	2	1
	x ⁵	1920	0	0	0	0	0	36	0	0	0	0	0	0	0	0	0
	X ⁶	4732	28	28	28	28	28	52	28	0	4	0	4	0	4	0	0
	x ⁷	9648	0	0	0	0	0	84	0	0	0	0	0	0	0	0	0
	X ⁸	15550	46	46	46	46	46	102	46	4	4	4	4	4	4	4	2
	x ⁹	20932	0	0	0	0	0	126	0	0	0	0	0	0	0	0	0
$ICM(x^{q_1}) =$	\mathbf{x}^{10}	22848	60	60	60	60	60	124	60	0	6	0	6	0	6	0	0
	x^{11}	20932	0	0	0	0	0	126	0	0	0	0	0	0	0	0	0
	x ¹²	15550	46	46	46	46	46	102	46	4	4	4	4	4	4	4	2
	x ¹³	9648	0	0	0	0	0	84	0	0	0	0	0	0	0	0	0
	X ¹⁴	4732	28	28	28	28	28	52	28	0	4	0	4	0	4	0	0
	x ¹⁵	1920	0	0	0	0	0	36	0	0	0	0	0	0	0	0	0
	X ¹⁶	570	8	8	8	8	8	16	8	2	2	2	2	2	2	2	1
	X ¹⁷	138	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0
	X ¹⁸	16	2	2	2	2	2	2	2	0	2	0	2	0	2	0	0
	x ¹⁹	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	$\left(x^{20} \right)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Symmetry characterization of enumerated Ho(3.3) PCPs.

The chirality fittingness of Ho(3.3) PCPs is governed by the parity of the degree of homopolysubstitution q_1 according to the following rules :

 q_1 Odd: For q_1 odd only C_1 -chiral isomers and $C_s^{"}$ -achiral isomers are formed for the system $\phi_2 C_6 H_{q_0} X_{q_1}$.

q₁ **Singly even**: If the degree of homopolysubstitution q₁ is singly even in the system $\phi_2 C_6 H_{q_0} X_{q_1}$ the occurrence of chiral isomers is allowed for the subsymmetries C_1, C_2, C_2, C_2 where C_1 is the dominant lass and C_2, C_2, C_2 is a triply degenerate second class. In this case $A_{q_1}(C_1) = A_{q_1}(C_2) = A_{q_1}(C_2) = A_{q_1}(C_2)$.

When $q_1 > 2$, is singly even the occurrence of achiral isomers is allowed for the subsymmetries $C_s, C'_s, C'_s, C'_s, C_i, C_{2v}, C'_{2v}, C'_{2h}$, where C''_s is the dominant and where C_s, C'_s, C_i and $C_{2v}, C''_{2v}, C'_{2v}$ are respectively the first and the second triply degenerate classes of subsymmetries.

Hence,
$$A_{q_1}(C_s) = A_{q_1}(C_s) = A_{q_1}(C_s) = A_{q_1}(C_i) = A_{q_1}(C_{2v}) = A_{q_1}(C_{2v})$$

q₁ Doubly even: If the degree of homopolysubstitution q₁ is doubly even in the system $\phi_2 C_6 H_{q_0} X_{q_1}$ the occurrence of chiral isomers is allowed for the subsymmetries C_1, C_2, C_2, C_2 and D_2 . The C₁-chiral isomers are dominant over C_2, C_2, C_2 which constitute a triply degenerate second class and D_2 the third class. In this case $A_{q_1}(C_1) = A_{q_1}(C_2) = A_{q_1}(C_2) = A_{q_1}(C_2) = A_{q_1}(D_2)$.

The occurrence of achiral isomers is allowed for the following 11 subsymmetries: C_s, C'_s , $C_s^*, C_i, C_{2v}, C'_{2v}, C'_{2v}, C'_{2v}, C'_{2h}, C'_{2h}, D_{2h}, Which may be classified in accordance with the magnitude of the integer value <math>A_{q1}$ into 4 distinct equivalent classes as follows: $\{C_s^*\}, \{C_s, C_s, C_i\}, \{C_{2v}, C'_{2v}, C''_{2v}, C''_{$

These assumptions are verified by the results given in the rows of the ICM (X^{q_1}) for any q_1 odd or even in the system $\phi_2 C_6 H_{q_0} X_{q_1}$. It is to be noticed that for $q_1 = 2$ the coefficients of X^2 in the third row of the ICM (X^{q_1}) reveals that the system $\phi_2 C_6 H_{18} X_2$ exhibits 36 homodisubstituted [3.3] paracyclophane derivatives and 16 of them belong to C_1 while only 2 are assigned to each subsymmetry classified in the following 3 degenerate classes { $C_2, C_2, C_2^{'}$ }, { $C_s, C_s, C_s^{'}, C_1^{'}$ }, { $C_{2v}, C_{2v}^{'}, C_{2h}^{'}$ }. The molecular graphs for these stereoisomers are given in Fig. 2, where one can depict that inter annular homodisubstitution yields derivatives having their 2 ligands in position pseudo-meta (**18**), pseudo ortho (**22**), pseudo gem (**28**) and pseudo para (**30**).

CONCLUSION

The enumeration of Ho(3.3) PCPs derivatives have shown that the chirality of this polycyclic hydrocarbon is controlled by the parity of the degree of homopolysubstitution as follows :

- An odd degree of homopolysubstitution yields only C1-chiral isomers and Cs achiral isomers.
- A singly even degree of homopolysubstitution yields:
- (i) A dominant class of C_1 -chiral isomers together with 3 degenerate subsymmetries C_2, C_2, C_2 having respectively the same number of chiral isomers.
- (ii) A dominant class of C_s achiral isomers together with 3 degenerate subsymmetries C_s, C_s, C_i with equivalent number of achiral isomers.
- (iii) A doubly even degree of homopolysubstitution yields:
- (iv) A dominant class of C₁-chiral isomers together with 3 degenerate classes C_2, C_2, C_2, C_2^* and 1 class of D_2 chiral isomers.
- (v) A dominant class of $C_s^{"}$ -achiral isomers together with 3 degenerate classes $\{C_s, C_s^{'}, C_i\}$ followed by 6 degenerate classes $\{C_{2\nu}, C_{2\nu}^{'}, C_{2\nu}^{'}, C_{2h}, C_{2h}^{'}\}$ and a single $\{D_{2h}\}$ class of achiral isomers.

REFERENCES

- 1. R. C. Fuson, W. E. Ross and C. H. Mckeeven, J. Am. Chem. Soc., 60, 2935 (1938).
- 2. T. I. Temnikova and A. Oshueva, J. Gen. Chem., 33, 1368 (1962).
- 3. R. C. Fuson, W. E. Ross and C. H. Mckeeven, J. Am. Chem. Soc., 61, 414 (1939).
- 4. M. W. Haened, A. Flatow, V. Taglieben and H. A. Staab, Tetrahedron Lett., 1733 (1977).
- 5. D. J. Cram N. L. Allinger and H. Steinberg, J. Am. Chem. Soc., 76, 6132 (1954).
- 6. D. T. Longone, S. H. Kusefoglu and J. A. Gladysz, J. Am. Chem. Soc., 42, 2787 (1977).
- 7. A. Ron and O. Schnepp, J. Chem. Phys., 44, 19 (1966).
- 8. G. Melzer, D. Sweitzer and K. H. Hausser, J. Chem. Phys., **39**, 229 (1979).
- 9. L. B. Norman, Discrete Mathematics, New York: Oxford Univ., Press, 5th Ed. (1989) p. 276.
- 10. S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry, Springer-Verlag: Berlin-Heidelberg (1991) p. 13, 40, 48, 109, 207, 242, 270, 273
- 11. S. El-Basil, Combinatorial Organic Chemistry: An Education Approach, Nova Science Publishers, Inc, Huntington, New-York (2000) p. 50.
- 12. S. Fujita, Subduction of Coset Representations, Theor. Chim. Acta., 76, 247 (1989).
- 13. S. Fujita, Subduction of Dominant Representations, Theor. Chim. Acta., 91, 315 (1995).