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ABSTRACT

In this paper, the concept of the self-absorption coefficient is discussed
using the concept of escape factor. The calculation methods of the escape
factor for any profile and any atom cavity are discussed. For the spherical
geometry, the escape factors (r) at any position r in a spherical geometry
plasma (with the radius R) for Lorentzian and Holtsmarkian profiles are cal-
culated for the first time, and a general expression is obtained. As an ex-
ample, for the sodium 330.3nm resonance line, the total radiance and the real
radiance are calculated, and the self-absorption coefficient for the resonance
line is discussed. This discussion will be useful for the study of escape
factor and the self-absorption of spectral lines.
 2009 Trade Science Inc. - INDIA

INTRODUCTION

The analysis of spectral line is an important diag-
nostic tool for physics and chemistry. In order to ex-
tract useful spectroscopic information from atom va-
pors, one has to take in account all the physical phe-
nomena occurring in this medium. Specially, one has to
estimate the self-absorption phenomenon, which gives
apronounced non-linearity in the calibration function at
increasing concentration of the element and is often ne-
glected[1]. The self-absorption effect of the atomic spec-
tral lines emitted by the plasma can be used to measure
the population density of the metastable and resonant
atoms in the discharge. The self-absorption lead to un-
derestimation of the intensity of the resonance lines
emitted by no optically thin plasma and to underestima-
tion of the concentration of the species deduced from

this analysis[2]. For that reason and in order to correct
the experimental measure of the intensity (study the re-
absorption of resonance lines which are generally more
affected by the self-absorption than non-resonances
lines), a large number of letters had for subject the prob-
lem of self-absorption in optical emission spectroscopy;
several methods were proposed to estimate the reduc-
tion of the line intensity due to this effect[3-5].

In this paper, we suggest estimating quantitatively
the self-absorption phenomenon for the resonance line
of sodium resonant line. Theory shows that we can treat
the self-absorption of resonance line by means of the
escape factor. For the resonance line, the escape fac-
tor is defined as the ratio of the radiation, fluxes escap-
ing from the plasma to the fluxes escaping from opti-
cally thin plasma. Discussions on the escape factor have
been developed greatly in recent years, and many use-
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ful results have been obtained[6-15]. In general, escape
factors have been used in two similar senses to model
the radiation transfer of spectral lines. In one senses, an
escape factor multiplies the emission expected from an
optically thin plasma to allow for the effect of opacity
on the emitted lines. In the other sense, an escape fac-
tor is a parameter, which multiplies the radiative transi-
tion probability to allow for the effect of photo-excita-
tion on population densities[16].

Theory of self-absorption

With the assumption of local thermodynamic equi-
librium, in the case of an optically thin, homogeneous,
and isothermal plasma, the total radiance (W m-2sr-1) of
a particular line is given by[17].
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where L
0
(T) is the Planck distribution for the blackbody ra-

diation (W m-2sr-1 m-1), R
p
 is the length of the emitting plasma

region, and k(T) is the monochromatic effective absorption
coefficient corrected for the effects of stimulated emission[18].
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where e is the elementary charge, c the light velocity, 
0
 is the

electrical permittivity, m
e
 is the electron mass, n

m
 is the popu-

lation number density of the emitting state, f
nm

 is the oscillator
strength of the transition, g

m
 is the degeneracy of the upper

energy level, En and Em are the energies of the lower and
upper energy levels respectively, k

B
 is the Boltzmann con-

stant, Q(T) is the internal partition function, and P() the nor-
malized line profile.

If the line is not self-absorbed, its intensity is given
by Eq.(1). If the self-absorption phenomenon is signifi-
cant, Drawin and Emard have shown that the real line
radiance can be written as[1].
I

0
(T)=Ithin

0
(T)

r
(0) (3)

Where 
r
(0) is the so called �escape factor.� This dimension-

less parameter whose value lies between 0 and 1 is defined as
the ratio between the real radiation flux escaping from the
plasma and the radiation flux in the optically thin case.

3. The concept of the escape factor in plasma

According to the effect of the escape factor, we
will discuss the escape factor on two aspects. In atom
absorption measurement, because of the existence of

the photon escape factor, the transmission of the laser
will deduce, and we call the effect on transmission; For
atom emission, for the photon escape and photon cap-
ture, the spontaneous emission coefficient will deduce,
and we call the effect on emission. We will discuss the
two concepts at follows:

(1) Effect on transmission

In plasma, we assume that an atom is excited to the
higher lever by some reason. When it radiates to the
lower lever, a photon will emit. Before traveling to the
surface, the photon maybe captured, maybe escaped.
If the photon emits at r , it travels to s

 at the surface
and escapes from this point as shown in figure 1.

Then the photon escape probabilities for all over
the surface, that is the escape factor is given by[19]:

3
s

0

Sr

Sd).Sr(
)Sr(T

4
1

)r(






 





(4)

where 
0
 is the optical depth in the line center, )Sr(T 0



 de-

notes the probability that a photon escape from s
 , Sd



denote

the integral is all over the surface.

For this effect, the escape factor can be called pho-
ton escape probability, and has been discussed in detail
in Ref.[20]. From figure 1 we can find that the plasma
geometry has important effect on the escape factor, so
we will discuss this problem in later section.

(2) Effect on emission

Considering a two lever system as shown in figure
2, we know that a photon in higher lever j will emit to
lower lever i . For optical thin plasma, the photon can
emit to the lower lever without being captured, and we
denote the spontaneous emission coefficient A. But for
optical thick plasma, the photon will be captured (or
absorbed) before emitting to the lower lever, so we

Figure 1: The diagram for photon escapes
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think the spontaneous emission coefficient will deduce

to )r(A , where )r( is the escape factor. The escape

factor can be written as
= 1- (5)

where  is the average capture probability, and it is a function

of position r and time t,  )t,r( is given by
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where )t,r( is the distribution of the number density of the

atom, )r,'r(G denotes the probability that a photon is cap-

tured in the volume of r .

A solution is the amplitude of )t,r( is )r( , but will

decrease as the time
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4. Calculation of the escape factor with different
profiles

For different widen profiles, the esape factor can
be calculated in different approximation formula.

Gaussian profile

For the thermal motion of the plenty of atoms, ac-
cording to the Doppler effect, we think the widen is
described by the Gaussian profile:
f() = f

0
exp[-4(-

0
)2In 2/D2] (9)

where  is the wave number£¬f
0
 is the radiative intensity of

the line center.

The escape factor for the Gaussian profile is given
by
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Lorentzian profile

For the frequently collisions among the atoms, we
think the widen is described by the Lorentzian profile:
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where s is a constant with the radiation.

The escape factor for the Lorentzian profile is given
by
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Voigt profile

The voigt profile is the convolution of the Gaussian
profile and the Lorentzian profile, and it is presented as
an integral form:

dt
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Where y = 
L
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 (In2)1/2, x = -

0
/

D
 (In2)1/2, f = 1/

D


(In2)1/2. We have done some work on the Voigt profile.

The escape factor for the Voigt profile can be given
by the non-linear combination of that of Gaussian pro-
file and Lorentzian profile :
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where  is the damping constant which is a measure of the
half-width of Lorentzian profile relative to that of Doppler pro-
file, that is

D

L2In
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In Eq.(17), G(
0
) and L(

0
) are the escape factor

for pure Doppler and Lorentzian line profiles, respec-
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Figure 2 : The diagram for photon emission
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Holtsmarkian profile

For the frequently collisions between the absorp-
tion atoms and other atoms, we think the widen is de-
scribed by the Holtsmarkian profile:
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where  is the half width of the Holtsmarkian profile.

The escape factor for the Holtsmarkian profile is
given by:
H(

0
) = 0.451/

0
3/5 (19)

Where 
0
 is the optical depth in the line center. For the absorb-

ing volume of width L, the optical depth in the line center 
0
 is

given by:


0 
= NLP(0) (20)

where  is the Ladenburg cross-section given by =(e2/mc)f
ij
,

where f
ij
 is the oscillator strength of the resonance transition,

and it is given by[21]
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where 
0
 is permittivity of free space,  is charge of electron,

mis mass of electron, c is speed of light, g is statistical weight,


21
 is lifetime of excited state, and 

0 
is the resonance wave-

length of the atom transition. In Eq.(20), Nis the number den-
sity of the absorbing atoms in the ground state. The relation
between N and the maximum absorption coefficient k
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 for Voigt

distribution is
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where 
N
, 

L
 and 

D
 are the natural, Lorentzian and Dop-

pler half-widths respectively.

The Doppler half-widths is given by:


D
 = 0(7.162310-7)(T/M)1/2 (23)

where T is the absolute temperature of the gas, M is the mass
of lithium atom.

The natural half-widths is given by:


N
 = 1/2

21
C (24)

where 
21

 is the lifetime of excited state, c is speed of light.

The Lorentzian half-widths is given by:
L=2r

air
(296/T)nP (25)

where n is the temperature coefficient, and in general gas,
n=0.75, r

air
 is the widen coefficient in atmosphere, r

air
 = 3.34

10-2cm-1/atm

5. The escape factor for spherical geometry atom
cavity

There are three geometry atom cavities in atom
absorption measurement, slab geometry, cylindrical
geometry and spherical geometry. The escape for slab
and cylindrical geometries has been done[22]. Here we
will give the breif description of the brivation.

Infinite slab geometry

Consider a source of infinite plane-parallel slab ge-
ometry as shown in figure 3, in which the z axis is nor-
mal to the two surfaces (which correspond to z=0 and
z=D) and  denotes inclination to the z axis. Such a
geometry corresponding approximately to a plasma
where the emissivity and absorption coe6cient drops
rapidly with distance from the target surface, but is typi-
cally approximately constant in the plane of the target
over the focal area of the plasma.

Because the slab is infinite, we can choose a circle
element of surface area. So

 dsrs2sds2Sd (26)
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where  = cos £¬the following relation has been used
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s
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
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Bringing Eq.(27) to Eq.(4), noticing that 



cos

z
sr and

Figure 3 : The infinite slab geometry
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the integral is over the whole surface area, we have
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At the centre of the slab
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Infinite cylindrical geometry

Consider the infinite cylindrical geometry as shown
in figure 4, we can find that

 cos/dsecdSr2Sd (31)

then
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so Eq.(4) can be written as
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where the relation of  and  is

2+2r cos -(R2-r2)=0 (34)

At the center, r=0, =R, Eq.15 can be written as
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0
0c (35)

Spherical geometry

In this section, we will discuss the escape factor for
spherical geometry using this method.

In plasma, we assume that an atom is excited to the
higher lever by some reason. When it radiates to the
lower lever, a photon will emit. Before traveling to the
surface, the photon maybe captured, maybe escaped.

If the photon emits at r
 , it travels to s at the surface

and escapes from this point. For the spherical geom-
etry plasma, a figure is shown in figure 5.

Then the photon escape probabilities for all over
the surface, that is the escape factor is given by[23]:
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where k
0
 is the peak absorption coefficient, )srk(T 0  de-

notes the probability that a photon escape from s , Sd denote

the integral is all over the surface.

For the spherical geometry plasma, we can choose
a circle plane as shown in figure 6. We can find

 dsinR2dlsinRRSd 2 (37)

So in Eq.(36), we have
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From figure 6 we can find that
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So we can rewrite Eq.(38) as
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According to Eq.(36), the escape factor can be
rewritten as


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Figure 4 : The infinite cylindrical geometry

Figure 5 : The spherical geometry plasma
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where T(k
0
) is the transmission factor, which denotes the aver-

age probability that a photon propagates at least an optical
depth through the source without being captured, i.e.

du)u()exp((T 00 



 (42)

which has the following asymptotic forms:
Lorentzian profile, T(

0
) = /(

0
)1/2

Holtsmarkian profile, T(
0
) = 0.451/

0
3/5

In figure 6 we can find that  is little and varies little,
so we can choose cos =1  as an approximation. In
Eq.(41), we can obtain
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Using the Taylor series
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Remaining the first order, we have
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Because r<R, we can neglect r2/R2 in Eq.(45), so
we have

)(T

R
r

21

1
)r( 0


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Eq.(46) is the escape factor at any position r for the
spherical geometry. The calculation fomula of optical
depth in the line center can be find in Ref.[24]. If we
choose the optical depth in the line center 

0
=103  and

the radius of the absorbing sphere R=2m, the escape
factor at any position r for Lorentzian and Holtsmarkian
profiles are shown in figure 7.

From figure 7 we can find that the escape factor for
the Holtsmarkian profile is larger than for the Lorentzian
profile with any r; as the increasing ofr, the escape fac-
tor will increase, which shows that the photon near the
surface is easy to escape from the surface.

There are other widen profile in the discussion of
the escape factor, such as the Voigt profile, and we

have done many works on the Voigt profile[25-26]. But
here we only discuss the Lorentzian profile and the
Holtsmarkian profile for the conmplexity of the Voigt
profile.

6. The self-absorption of Na 330.3nm

According to Eq.(1) and Eq.(2), because P(ë) is
normalized, we have

1d)(P
0




(47)

The Planck distribution for the blackbody radiation
L

0
(T) is[27].
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where h is the Planck constant, T is the temperature of the
atoms.

The population number density of the emitting state
n

m
 can be given by

T
B

m

k

E

m en

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Figure 6 : A circle plane we choosed

Figure 7 : The escape factor with different r for Lorentzian
and Holtsmarkian profiles
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Where E
m
 is the energy, K

B
 is the Boltamann constant.

The internal partition function Q(T ) is[28]


i

kT
E

i

i

eg)T(Q (50)

For the sodium 330.3nm resonance line, it is from
the election transition of 2p

6
3s-2p

6
4p, and the transi-

tion characteristics are shown in TABLE 1[29].
When the temperature varies from 1000~2000K,

the total radiance of the Na 330.3nm we calculated is
shown in figure 8.

Let us Consider any temperature, such as
T=1500K, the total radiance we calculated is Ithin

0
(T)=

3.810-25. According to Eq.(3), the real line radiance
at any position r in a spherical geometry is given by
figure 9.

From figure 9 we can find that for the sodium
330.3nm resonance line, the real line radiance is less
than the total radiance, which we call self-absorption.
As the increasing of the position r, the escape factor
will increase, and the self-absorption of the resonance
will decrease.

7.CONCLUSIONS

In this paper, the self-absorption coefficient of so-
dium 330.3nm for the spherical geometry atom cavity
is discussed using the escape factor, for Lorentzian and
Holtsmarkian profiles. From discussion, the following
conclussions can be drawn:
1. The escape factor can be denoted by the ratio of

the real radiance with the total radiance, which can
be used to explain the self-absorption for a spectral
line.

2. The escape factor for the spherical geometry is cal-
culated, and a simple expression is obtained. As the
increasing of the position r, the escape factor will
increase, which shows that the photon near the sur-
face is easy to escape from the surface.

3. For the sodium 330.3nm resonance line, the real
line radiance of is less than the total radiance, which
we call self-absorption. As the increasing of the po-
sition r, the escape factor will increase, and the self-
absorption of the resonance will decrease.
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