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ABSTRACT 
 
Firstly, this paper presents the origin and definition of variational inequalities, the
existence and uniqueness of the solution; and then to the unilateral stability problems in
the elastic plate theory as the background, to discuss second classes of four order
variational inequality, reset equivalent and the equation boundary value problem. Finally,
it provides the foundation for the four order variational inequality of the second kind is
solved by boundary element method. 
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INTRODUCTION 
 

Variational inequality is also known as the variational equation, originating in mathematical 
physics and nonlinear programming problems, which is a very important research field in Applied 
Mathematics; The model of variation inequality is partial differential equation with proper boundary 
value conditions and initial conditions, and it is a important branch of differential equation for it exist in 
equations. 
Example 1 

The variation principle is an important part of mathematical physics; take the stable of elastic 
film for example. Suppose the film in the regionΩ of plane xy , the boundary is unchangble, and set 
elastic modulus and horizontal density is 1. The plan has an elastic deformation for vertical force exerted

( , )f x y , and vertical displacement ( , )u x y . In order to making potential reaching minimum by the 
principle of minimum potential. The problem is find the minimum of ( , )u x y : solving 1

0 ( )u H∈ Ω , let 
 

1
0 ( )

( ) min ( )
v H

J u J v
∈ Ω

=  (1) 

 
Among them 

 
21( ) d d d d

2
J u u x y f u x y

Ω Ω
= ∇ −∫ ∫  

 
In the other hands, by the principle of virtual work, the vertical displacement ( , )u x y  meet virtual 

work equation 
 

1
0d d d d , ( )u v x y f u x y v H

Ω Ω
∇ ⋅∇ = ∀ ∈ Ω∫ ∫  (2) 

 
It can be proved easily by math that (1)equal to (2), and by calculus of variations, the euler 

equations of (1) is 
 

⎩
⎨
⎧

Ω∂=
Ω=Δ−

tou
tofu

,0
,

 (3) 

 
Allow for the example in the application of variational principle for the entire set of functions 

linear space 1
0 ( )H Ω , resulting in the equation in the form of (2) and (3). If allowed to the set of function 

is not the entire linear space but convex subset of this space, lead to the form of inequality problem that 
variational inequality. Therefore, variational inequalities variational principle is an important promotion. 
Example 2 

Suppose an elastic plate is placed on a rigid object, the plate surfaceΩ load ( , )f x y , the rigid 
object surface is ( , )x yϕ , the plate boundary is∂Ω , 

 

Ω∂=
∂
∂

= to
v
uu ,0  

 
So, the allowable defection set is 

 
{ }Ω≥Ω∈= tovHvK ,:)(2

04 ϕ  
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The deflection ( , )u x y is a solution of the minimization problem: solving 4u K∈  let 
 

4

( ) min ( )
v K

J u J v
∈

=  (4) 
 
Among them 
 

1( ) ( , ) ( )
2

J v a v v f v= −  

 
2 2 2 2 2 2

2 2 2 2( , ) (1 ) 2 d du v u v u va u v u v x y
x y y x x y x y

σ
Ω

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
= Δ Δ − − + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
∫  

 

( ) d df v f v x y
Ω

= ∫  
 
Type (4) is equal to a variational inequality: solving 4u K∈ ,let 
 

4( , ) ( ),a u v u f v u v K− ≥ − ∀ ∈  (5) 
 
Can prove that ( , )u x y is also a solution of the linear complementarily problem, 4u K∈ ,and 
 

2

2

, 0, ;
( )( ) 0, .
u u f in
u u f in

ϕ

ϕ

⎧ ≥ Δ − ≥ Ω⎪
⎨

− Δ − = Ω⎪⎩
 (6) 

 
VARIATIONAL INEQUALITY AND ITS SOLUTION 

 
Definition 

Definition 1 The definition about the first class of elliptic variational inequalities is solvingu K∈
,let 
 

( , ) ( ),a u v u L v u v K− ≥ − ∀ ∈  (7) 
 

When ( , )a u v  is symmetric, Type (7) is equal to a variational inequality:solvingu K∈ , let 
 

( ) min ( )
v K

J u J v
∈

=  (8) 
 
Among them 
 

1( ) ( , ) ( )
2

J v a v v L v= −  

 
Definition 2 The definition about the second class of elliptic variational inequalities is solving u V∈ ,let 
 

( , ) ( ) ( ) ( ),a u v u j v j u L v u v V− + − ≥ − ∀ ∈  (9) 
 
The existence and uniqueness of the solution 

Theorem 1 Suppose V is a Hilber space, and VK ⊂ is a non empty closed convex set. Suppose
( ), :a V V R⋅ ⋅ × → , which in spaceV , is a continuous, symmetric and elliptical bilinear form, ( L V ′∈ ), 

and :j K R→ is a convex lower semi continuous function. 
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( ) ( ) ( ) ( )1 ,
2

E v a u v j v L v= + −  

 
The minimal value problem 
 

)(inf)(, vEuEKu
Kv∈

=∈  

 
It has an exclusive solution. And that Ku∈ is a minimal value problem solution, if and only if 
 

, ( , ) ( ) ( ) ( ),u K a u v u j v j u L v u v K∈ − + − ≥ − ∀ ∈  
 
The following gives a extension conclusion about theorem 1. 

SupposeV is a real Hilbert space, it has the inner product ( ),⋅ ⋅ and norm ⋅ . We call the operator
VVA →: is strongly monotone, if there is a constant 00 >c , 

 
( ) ( )( ) 2

0, , ,A u A v u v c u v u v V− − ≥ − ∀ ∈  
 
We call the operator A is Linschitz continuous, if there is a constant 0M > meet 
 

( ) ( ) , ,A u A v M u v u v V− ≤ − ∀ ∈  
 

Theorem 2 SupposeV is a Hilber space, and VK ⊂ is a non empty closed convex set. Suppose
VVA →: strongly monotone and Linschitz continuous, RKj →: convex lower semi continuous. 

Then for any Vf ∈ , elliptic variational inequalities 
 

,Ku ∈  ( )( ) ( ) ( ) ( ), , ,A u v u j v j u f v u v K− + − ≥ − ∀ ∈  (10) 
 
Having an exclusive solution and the solution ofu  is Linschitz continuous dependence on f . 

 
THE SECOND CLASS OF FOURTH ORDER VARIATIONAL INEQUALITIES AND ITS 

SOLUTION 
 

We elasticity theory in flat background unilateral stability, discussion of the second class of 
fourth order variational inequalities, reset equivalent and the equation boundary value problem. Finally, 
it provides the foundation for the four order variational inequality of the second kind is solved by 
boundary element method. 
 
Issues raised and symbols 

HypothesisΩ , which has a smooth boundaryΓ , is a bounded open domain in 2R , meas (Γ ) 0> , 
we define ( ) ( )2 1

0V H H= Ω ΩI ; 
Among them 
 

( ) ( ) ( ){ }2 2; ,mH u L u L mα αΩ = ∈ Ω ∂ ∈ Ω ≤  
 

( ) ( ){ }1 1
0 , 0H u H u ΓΩ = ∈ Ω =  
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( ),a u v u vdx uvdx
Ω Ω

= Δ Δ +∫ ∫  

 
( )nH Γ , was defined as usually Sobolev space, n  is a real number. We suppose ( )2f L∈ Ω  is a 

given function. Based on this definition, we then define 
 

,f v fvdx
Ω

= ∫  

 

( ) vj v g ds
nΓ

∂
=

∂∫  

 
Among them, ( )g L∞∈ Γ  is a given constant, and 0g > when it inΓ . We define the subspaceΛ

which belongs to ( )2L Γ as follows 
 

( ) ( ) ( ) ( ){ }2 , 1 . .x x L x a eμ μ μΛ = ∈ Γ ≤ Γ上  
 
Consider the functional minimization problem 
 

⎩
⎨
⎧

∈∀≤
∈

VvvJuJ
madeVusolving

),()(
,

 (11) 

 
Among them 
 

( ) ( )1 , ,
2

vJ v a v v f v g ds
nΓ

∂
= − +

∂∫  (12) 

 
Theorem 3 the functional minimization problem (11) is equivalent to solving the variational inequalities 
 

⎩
⎨
⎧

∈∀−≥−+−
∈

Vvuvfujvjuvua
madeVusolving

,,)()(),(
,

 (13) 

 
Functional right side of inequality ( )j ⋅ is non-differentiable 

Proved: Supposeu V∈ is a minimum point inV which belongs to (11), the u V∀ ∈ and [ ]0,1t∈  have 
 

( ) ( )1 , ,
2

uJ u a u u f u g ds
nΓ

∂
= − +

∂∫ ( )( )J u t v u≤ + −  

 

( ) ( )( ) ( )1 , ,
2

a u t v u u t v u f u t v u= + − + − − + − +
( )u t v u

g ds
nΓ

∂ + −
∂∫  

 

( ), , 1 u vf u t f v u t g ds tg ds
n nΓ Γ

∂ ∂
≤ − − + − +

∂ ∂∫ ∫  

 
Finishing 
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( ) ( ), , ,
2
t u va v u v u a u v u g ds g ds f v u

n nΓ Γ

∂ ∂
− − + − + − ≥ −

∂ ∂∫ ∫  

 
Let 0t +→  have to 
 

( ), ,u va u v u g ds g ds f v u
n nΓ Γ

∂ ∂
− + − ≥ −

∂ ∂∫ ∫  

 
It is the type (13). 
On the contrary, u V∈ is a solution of the variational inequalities (13), because that 
 

( ) ( ) ( ) ( )1 1 1, , , ,
2 2 2

a v v a u u a u v u u v u a u u− = + − + − −⎡ ⎤⎣ ⎦  

 

( ) ( ) ( )1, , ,
2

a u v u a v u v u a u v v= − + − − ≥ −  

 
From type (13) we can obtain 
 

( ) ( )1 1, ,
2 2

a v v a u u− ( ) ( ) ( ), ,a u v u j u j v f v u≥ − ≥ − + −  

 
So 
 

( ) ( ) ( ) ( )1 1, , , ,
2 2

a v v f v j v a u u f u j u− + ≥ − +  

 
That 
 
( ) ( )J v J u≥  v V∀ ∈  

 
So, the pointu V∈  is a solution of functional minimization problem. 
 
Friction problem and the corresponding reset equivalent and the equation boundary value 
problem. 

Theorem 4 The solution of problem (13) could be represented by the following non-
homogeneous reset equivalent and the equation boundary value problem: 
Existλ∈Λ have to 
 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

Γ
∂
∂

=
∂
∂

Γ−=Δ=
Ω=+Δ

inea
n
u

n
u

inguu
tofuu

..

,0

2

λ

λ  (14) 

 
Proved: Letu V∈  Meet (13), By Green formula we can obtain 
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( ),a u v u− ( ) ( )u v u dx u v u dx
Ω Ω

= Δ Δ − + −∫ ∫  

 

( ) ( ) ( ) ( )2 v uuu v u dx v u ds u ds u v u dx
n nΩ Γ Γ Ω

∂ −∂Δ
= Δ − − − + Δ + −

∂ ∂∫ ∫ ∫ ∫  

 

( )u vg ds g ds f v u dx
n nΓ Γ Ω

∂ ∂
≥ − + −

∂ ∂∫ ∫ ∫  

 
Thus 
 

( )( ) ( ) ( )2 v u uu u v u dx u v u ds
n nΩ Γ

∂ −⎡ ⎤∂Δ
Δ + − + Δ − − +⎢ ⎥∂ ∂⎣ ⎦

∫ ∫  

 
v ug ds
n nΓ

⎡ ∂ ∂ ⎤
−⎢ ⎥∂ ∂⎣ ⎦

∫ ( )f v u dx
Ω

≥ −∫  (15) 

 
Takingv u w= + , among them 
 

( ) ( ){ }2 2
0 , 0w H w H w Γ∈ Ω = ∈ Ω =  

 
Obviouslyv V∈ , and 
 

( ) 0 u v u vv u w u v
v n v nΓ Γ Γ Γ Γ Γ Γ Γ

∂ ∂ ∂ ∂
− = = ⇒ = ⇒ = ⇒ =

∂ ∂ ∂ ∂
 

 
Thus 
 

( )2u u wdx fwdx
Ω Ω
Δ + ≥∫ ∫  

 
The type is also established for ( )2

0w H− ∈ Ω , so we can obtain 
 

( )( ) ( )2u u w dx f w dx
Ω Ω
Δ + − ≥ −∫ ∫  

 
That is 
 

( )2u u wdx fwdx
Ω Ω
Δ + ≤∫ ∫  

 
So it has 
 

( )2u u wdx fwdx
Ω Ω
Δ + =∫ ∫  ( )2

0w H∀ ∈ Ω  

 
In the sense of generalized function, the variational method can be the basic lemma: 
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Ω=+Δ tofuu ,2  
 
Substituting into (15) where we have: 
 

( ) ( ) 0
v u u v uu v u ds g ds

n n n nΓ Γ

∂ −⎡ ⎤∂Δ ⎡ ∂ ∂ ⎤
Δ − − + − ≥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

∫ ∫  

 
Finishing 
 

0v u v u u uu v g ds u u g ds
n n n n n nΓ Γ

⎡ ∂ ∂Δ ∂ ⎤ ⎡ ∂ ∂Δ ∂ ⎤
Δ − + − Δ − + ≥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∫ ∫  (16) 

 
Takingv ku= in type (16), among them 0k ≥ , therefore: 
 

( )1 0u u uk u u g ds
n n nΓ

⎡ ∂ ∂Δ ∂ ⎤
− Δ − + ≥⎢ ⎥∂ ∂ ∂⎣ ⎦
∫  0k∀ ≥  

 
When 0 1k≤ < , we can obtain 
 

0u u uu u g ds
n n nΓ

⎡ ∂ ∂Δ ∂ ⎤
Δ − + ≤⎢ ⎥∂ ∂ ∂⎣ ⎦

∫  

 
When 1k ≥ , we can obtian 
 

0u u uu u g ds
n n nΓ

⎡ ∂ ∂Δ ∂ ⎤
Δ − + ≥⎢ ⎥∂ ∂ ∂⎣ ⎦

∫  

 
Thus 
 

0u u uu u g ds
n n nΓ

⎡ ∂ ∂Δ ∂ ⎤
Δ − + =⎢ ⎥∂ ∂ ∂⎣ ⎦

∫  

 
That 
 

0u u uu u g
n n n
∂ ∂Δ ∂

Δ − + =
∂ ∂ ∂

 Γin  (17) 

 
And because 0u Γ = , we can obtain 
 

0u uu g
n n
∂ ∂

Δ + =
∂ ∂

 

 
That 
 

u uu g
n n
∂ ∂

Δ = −
∂ ∂

 (18) 
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We take the
1

1 u u
n n

λ
−

− ∂ ∂
= ⋅
∂ ∂

, among themλ∈Λ . 

So there existλ∈Λ , meet 
 

u u
n n

λ ∂ ∂
=

∂ ∂
 

 
Substituting into (18), we can obtain 
 

u gλΔ = −  inΓ  
 
Conversely, if (14) holds. 
Let 2u u fΔ + = make inner product by ( )v u− inΩ , and then by using Green formula can be obtained: 
 

( ) ( ) ( ) ( ), 0
v uua u v u v u ds u ds f v u dx

n nΓ Γ Ω

∂ −∂Δ
− + − − Δ − − =

∂ ∂∫ ∫ ∫  

 
Finishing 
 

( ) ( ), 0u v u ua u v u v u ds u u ds f v u dx
n n n nΓ Γ Ω

∂Δ ∂ ∂Δ ∂⎡ ⎤ ⎡ ⎤− + − Δ − − Δ − − =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦∫ ∫ ∫  (19) 

 
By (14) of known boundary conditions can be obtained 
 

0u u u u uu u g ds g g ds
n n n n n

λ λ
Γ Γ

⎡ ∂ ∂Δ ∂ ⎤ ∂ ∂⎡ ⎤Δ − + = − + =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦
∫ ∫  (20) 

 
While 
 

0v v ug u v ds
n n nΓ

⎡ ∂ ∂ ∂Δ ⎤
+ Δ − ≥⎢ ⎥∂ ∂ ∂⎣ ⎦

∫  (21) 

 
By sum type (20) and type (21) can be obtained type (16). 
Then by sum type (16) and type (19) we can obtain 
 

( ) ( ), 0v ua u v u g ds g ds f v u dx
n nΓ Γ Ω

∂ ∂
− + − − − ≥

∂ ∂∫ ∫ ∫  

 
So 
 

( ) ( ) ( ), ,a u v u j v j u f v u v V− + − ≥ − ∀ ∈  
 
Thus the theorem can be proved. 
 
The regularization method of the non differentiable term in second classes of four order 
variational inequality 

In the solving process of this kind of Variational inequalities, one of the biggest questions is that 
it has existence No differential, this brings difficulties for construct and use of numerical methods. In 
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this case, we use the regularization method to construct differentiable functional ( ) vj v g ds
nε εΓ

∂⎛ ⎞= Ψ ⎜ ⎟∂⎝ ⎠∫

instead of ( ) vj v g ds
nΓ

∂
=

∂∫  No differential appreciatively, among of it. 

 

( ) ( )

2

2

0

2

1 ,
2

,
2

1 ,
2

g g g

t dt g

g g g

ξ

ε

ξ ε ξ ε

ξξ ϕ ξ ε
ε

ξ ε ξ ε

⎧ − ≥⎪
⎪
⎪Ψ = = <⎨
⎪
⎪− − ≤ −⎪
⎩

∫  (22) 

 
Here 
 

,

( ) ,

,

g g
tt g

g g

ξ ε

ϕ ξ ε
ε

ξ ε

≥⎧
⎪⎪= ≤⎨
⎪
− ≤ −⎪⎩

 (23) 

 
Obviously 
 

( )
0

lim v g vε
ε→

Ψ =   

 
Accordingly, the variational inequality (13) can be approximated the following formula 
 

⎩
⎨
⎧

∈∀−≥−+−
∈

Vvuvfujvjuvua
madeVusolving

zz ,,)()(),(
,

 (24) 

 
Easy inspect Functional ( )j vε is convex, differentiable and ( )

0
lim ( )j v j vε
ε→

=  

Theorem 5 Variational inequality (24) has a unique solution. 
Next, our solution gives variational inequalities (24) and he solution of Variational inequality 

(13), their relation Satisfy. 
Theorem 6 Let A and B is the solution of problem (13) (24), when 0ε → , uε converges strongly tou . 
Proof By the assumption, the problem (24) is 
 

( , ) ( ) ( ) ,a u v u j v j u f v u v Vε ε ε ε ε ε− + − ≥ − ∀ ∈  

 
Letv u= , we have 
 

( , ) ( ) ( ) ,a u u u j u j u f u uε ε ε ε ε ε− + − ≥ −  (25) 

 
In the formula (13), letv uε= ,we have 
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( , ) ( ) ( ) ,a u u u j u j u f u uε ε ε− + − ≥ −  (26) 
 
The (25) and (26) obtained by adding 
 

( , ) ( ) ( ) ( ) ( )a u u u u j u j u j u j uε ε ε ε ε ε− − ≤ − + −  (27) 
 
From (22), we obtain 
 

( ) 210
2

g g Rεξ ξ ε ξ≤ −Ψ ≤ ∀ ∈  

 
Defined by A and B, we have 
 

( ) ( ) ( )
2

0
2
gj v j v ds v Vε

ε
Γ

≤ − ≤ ∀ ∈∫  

 
Thus obtained by the equation (27) 
 

( )
2

( , )
2
ga u u u u dsε ε

ε
Γ

− − ≤ ∫  

 
So, when 0ε → , ( ), 0a u u u uε ε− − → , use mandatory of ( ),a ⋅ ⋅ ,uε converges strongly tou . This 

proof completes. 
Consider the following variational inequality (24) is equivalent form. Take v u tw= ± , 0t >  

w V∈ in (24), we have 
 

( , ) ,

u w ut
n n na u w g ds f w

t

ε ε

Γ

∂ ∂ ∂⎛ ⎞ ⎛ ⎞Ψ ± −Ψ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠± + ≥ ±∫  

 
Let 0t +→ , attention to 
 

0
lim
t

u w ut
n n n

t

ε ε

+→

∂ ∂ ∂⎛ ⎞ ⎛ ⎞Ψ ± −Ψ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ' u w u w
n n n nε ϕ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ±Ψ = ±⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 

 
Solution of the problem (24) isu V∈ , it meet 
 

( ), ,u ua u v g ds f v v V
n n

ϕ
Γ

∂ ∂⎛ ⎞+ = ∀ ∈⎜ ⎟∂ ∂⎝ ⎠∫  (28) 

 
This has been an equivalent variational form (28) of problem (24). 

So, we can take advantage of the boundary element method to solve variational problem (28), we can 
take advantage of the boundary element method to solve variational problem (28). 
 

CONCLUSION 
 

The first, Defines variational inequalities of elastomeric frictional contact problems obey 
Coulomb’s law, and give the existence and uniqueness of the solution. And then, this paper defines the 
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second class of fourth order variational inequalities, reset equivalent and the equation boundary value 
problem about the friction problem of elastic plate, and simplified boundary value problems and the 
corresponding homogeneous variational problems. The class of variational inequalities in non-
differentiable term use of regularization method, using differentiable function let this problem into 
equivalent variational equations, and then, using the boundary element method to solve the question. 
This article is intended to provide a way of thinking for the second and fourth order for solving 
variational inequalities. In the future research work, In this way we will be extended to solve higher-
order variational inequalities. 
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