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ABSTRACT 
 
The convergence analysis of the bilinear finite element method to a class of non-linear
degenerate wave equation on anisotropic meshes is considered in this paper. Moreover,
the global superconvergence for semidiscrete scheme is proposed through interpolation
instead of the Ritz Volterra projection of the exact solution. 
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INTRODUCTION 
 
 It is wellknow that wave equations can arise from many physical process, and a lot of them are 
nonlinear and widely used. Such as the perturked Sine-Gordon equation which occur in quantum 
mechanics, a model in the elasto–plastic- microstructure which describe the longitudinal motion of an 
elasto-plastic bar and anti-plane shearing in the case of spaces dimension (N=1). Therefore,many 
mathematicians and physicists focus their attention to study the nonlinear wave equations, and there 
have been a lot of impressive literatures[1-3]. 
 The superconvergence study of the finite element methods is one of the most active research 
subjects both in theoretical and in practical computations. However, it seems that there are few studies 
focusing on the high accuracy analysis of finite element methods for the nonlinear wave equations with 
dissipation, especially on the anisotropic meshes. As a matter of fact, in many cases, the regularity or 

quasi-uniform assumption (i.e., hKK TKCh ∈∀≤ ,ρ ,where hT  is a family of triangulation of Ω , KKh ρ,

are the diameter of K and the biggest circle contained in K, respectively, hTK
Khh

∈
= max

and C is a positive 
number independent of K and h.) described in[4] are great dificiences in application of finite element 
methods. For example, the solution of some elliptic problems may have anisotropic behavior in parts of 
the defined domain. This means that the solution only varies significantly in certain directions. It is an 
obvious idea to reflect this anisotropy in the discretion by using anisotropic meshes with a finer mesh 
size in the direction of the rapid variation of the solution and a coarser mesh size in the perpendicular 
direction. Besides, some problems may be defined in narrow domain, for example, in modeling a gap 
between rotter and stator in an electrical machine, if we employ the regular partition of the domain, the 
cost of calculation will be very high. Therefore, to employ anisotropic meshes with fewer degrees of 
freedom is a better choice to overcome these difficulties. However, anisotropic elements K are 

characterized by 
∞→

K

Kh
ρ , where the limit can be considered as 0→h . In this case, the Bramble-Hilbert 

Lemma can not be used in the estimate of the interpolation error. We have to apply the anisotropic finite 
element method as in[5-7]. 
 In this paper, we consider the convergence analysis of the bilinear finite element method to a 
kind of nonlinear degenerate wave equation on anisotropic meshes. The superclose and 
superconvergence properties for semidicrete scheme is obtained based on the anisotropic interpolation 
theorem proposed in[5-7], and the integral identities developed in[8-10] with the help of interpolation of 
solution to the problem cosidered, instead of referring to the Ritz Volterra projection of the exact 
solution, which makes the proof rather simpler than the previous studies. 
 

MODEL PROBLEM AND ITS VARIATIONAL FORMULATION 
 
 Consider the following nonlinear wave equation with dissipation: 
 

( ) ( ) ( ) [ ]
( ) ( ) [ ]
( ) ( ) ( ) ( )⎪

⎩

⎪
⎨

⎧

Ω∈==
×Ω∂∈=

×Ω∈=++Δ−

xxu0,xu,xu0,xu
T,0t,x0t,xu

T,0t,x0ufuguu

1t0

ttt

  (1) 

 

where Ω  is an open bounded set in R2, with smooth boundary Ω∂ . g, f, 0u and 1u are all known 
functions. For simplicity, we assume: 
(i) g and f are Lipschitz continuous with respect to u with Lipschitz constant L; 

(ii) [ ]( )TCu ,02 ×Ω∈  is a unique solution of (1). 

We denote by ( )ΩrsW ,
the standard Sobolev space of s-differential functions in ( )ΩrL , its norm and 

seminorm by rs,
⋅

and rs,
⋅

, and ( ) ( )Ω=Ω 2,2 sWH , 
,

2,ss
⋅=⋅

 ∞≤≤∞≤≤ rS 1,0 . 
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Throughout the paper C indicates a positive constant, possibly different accurrences, which is 
independent of the mesh parameters h, but may depend on u, g, f and T. 

Then the weak form of (2.1) is to find ( ) [ ] ( )Ω→⋅ 1
0,0: HTtu , such that 

 
( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )⎪⎩

⎪
⎨
⎧

Ω∈==
Ω∈∀=++∇∇+

.x,xu0,xu,xu0,xu
,Hv,0v,fv,ugv,uv,u

1t0

1
0ttt   (2) 

 
CONSTRUCTION OF THE FINITE ELEMENT 

 

 Let [ ] [ ]1,11,1ˆ −×−=K be the reference element with four vertices 
( ) ( ) ( )1,1ˆ,1,1ˆ,1,1ˆ 321 =−=−−= aaa  and ( )1,1ˆ4 −=a , and four edges ,ˆˆˆ

211 aal =  ,ˆˆˆ,ˆˆˆ
433322 aalaal == and 

144 ˆˆˆ aal = . The shape function space on K̂  is defined as: 
 

{ } { }ξηηξ==Σ ,,,1spanP̂,v̂,v̂,v̂,v̂ˆ
4321   (3) 

 

where ( ) 4,3,2,1,ˆˆ == iavv ii . 
It can be easily checked that the interpolations defined above are well-posed and the 

interpolation functions vI ˆˆ can be expressed as: 
 

( )( ) ( )( ) ( )( ) ( )( ) 4321 ˆ11
4
1ˆ11

4
1ˆ11

4
1ˆ11

4
1ˆˆ vvvvvI ηξηξηξηξ +−++++−++−−=

. 
 
It has been proved in[9] that the above interpolation operator has an anisotropic interpolation properties, 

i.e., for any ( ) 1,, 21 == αααα ,there holds 
 

( )
K̂,1K̂,0

v̂D̂Cv̂Îv̂D̂ αα ≤− .  (4) 
 

For the sake of convenience, let 2R⊂Ω be a convex polygon in x-y plane composed by a family 

of rectangular meshes hℑ , which does not need to satisfy the regularity and quasi-uniform 

assumptions[4]. For any hK ℑ∈ , denote the barycenter of element K by (xK; yK), the length of edges 

parallel to x-axis or y-axis by 2hx, 2hy, respectively, Kh = diam (K), hK
Khh

ℑ∈
= max

. 

Let KKFK →ˆ: be an affine mapping defined by 
 

⎩
⎨
⎧

η+=
ξ+=

yK

xK

hyy
hxx

  (5) 

 
Then the associated finite element space is 
 

{ }0,,ˆˆ =ℑ∈∀∈==
Ω∂

vKPFvvvV hKKh o , 

Define the interpolation operator ( ) hh VHI →Ω2: as 
 

( ) ( ) ( )Ω∈∀=→= −− 2112 ,ˆˆ,ˆ:, vFvIvIFPKHIII KKKKKKh oo . 
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THE SEMI-DISCRETE SCHEME AND CONVERGENCE ANALYSIS 
 

The approximation problem corresponding (4) reads as: Find ( ) [ ] hVTtU →⋅ ,0: , such that 
 
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )⎩

⎨
⎧

Ω∈==
∈∀=++∇∇+

.x,xIu0,xU,xIu0,xU
,Vv,0v,fv,Ugv,Uv,U

1t0

httt   (6) 

 
With the similar way to the proof in[10], we can get the semi-discrete (6) has a unique solution. 
From (4) and the Scaling techniques, we can easily get the following lemma. 

Lemma 1 : If ( ) ( ) ( ) ( ) [ ]TtHtututu ttt ,0,,,,,, 2 ∈Ω∈⋅⋅⋅ , we have 
 
( )

2
2

10
uChIuuhIuu ≤−+− ,  (7) 

 
( ) ( ) ( )

2tt2t
2

1t0t0tt uuChIuuh)Iuu(Iuu +≤−+−+− .  (8) 
 

Theorem 1 : On the hypotheses of Lemma 1, and the assumptions are satisfied, there holds 
 

( ) ( )
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⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
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2
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t

0

2
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2
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2
22

2
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Proof : Let uIuIuUuIuIuUuU −=−=+=−+−=− ωθωθ ,, subtracts (2.2) 

from (6), for any hVv∈ , we get the error equation 
 
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )v,ufUfv,ugUgv,v,v,v, tttttt −−−−∇ω∇+ω=∇θ∇=θ .  (10) 
 

Let tv θ=  in (4.5), then 
 

{ } ( ) ( ) ( )
( ) ( )( ) ( ) ( )( ).,ufUf,ugUg

,,
dt
d,

dt
d

2
1

tttt

tttt
2
1

2
0tt

θ−−θ−−

θ∇ω∇−θ∇ω∇+θω=θ+θ   (11) 

 

Integrating (11) with respect to t, and noting that ( ) ( )00 tθθ = , we have 
 

{ } ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

∑

∫ ∫
∫∫

=

=

τθ−+τθ−+

τθ∇ω∇−θ∇ω∇+τθω=θ+θ

5

1i
i

t

0

t

0
tttt

t

0

t

0
ttt

2
1

2
0t

L

d,ufUfd,ugUg

d,,d,
2
1

  (12) 

 
Using Young inequality and Lemma 1, it follows that 
 

( ) ( ) 2
1

t

0

2
1

2
0t

t

0

2
2tt

2
2t

2
2

2
321 4

1dCduuuChLLL θ+τθ+θ+⎟
⎠
⎞

⎜
⎝
⎛ τ++≤++ ∫∫   (13) 

 
By Lemma 1, assumption (i) and Cauchy inequality, yields 
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( )
( ) ( ) .dCduuCh
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duUduUCLL
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∫∫
∫
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τθθ+θω+θω+θ≤
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  (14) 

 
Combining (13) and (14), and applying Poincare′  inequality, we see that 
 

( ) ( )∫∫ τθ+θ+⎟
⎠
⎞

⎜
⎝
⎛ τ+++≤θ+θ

t

0

2
1

2
0t

t
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2
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2
2
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From Gronwall's Lemma, there holds 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ τ+++≤θ+θ ∫

t

0

2
1tt

2
2t

2
2

2
2
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2
0t duuuuCh .  (16) 

 
Thus 
 

( ) 2
1

t

0

2
1tt

2
2t

2
2

2
2

2
10t duuuuCh ⎟

⎠
⎞

⎜
⎝
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By the triangle inequality, the desired result then follows. The proof is completed. 
 

THE SUPERCONVERGENCE ANALYSIS 
 
 Now, we will turn our attention to the superclose property. At first, we shall introduce the 
following important lemmas. 

Lemma 2[11]: For any hVv∈ , hK ℑ∈ , we have the following inequalities 
 

K,0y
1

xK,0xy vChv −≤ , KxyKxy vChv
,0

1
,0

−≤
.  (18) 

 

Lemma 3: If ],0[),(),(),,( 3 TtHtutu t ∈Ω∈⋅⋅ , for any hVv∈ ; we have 
 

K,1K,3
2
KK vu)h(O)v,( =∇ω∇ ,  (19) 

 

K,1K,3t
2
KKt vu)h(O)v,( =∇ω∇ .  (20) 

 
Proof : Applying Lemma 2, with the similar way to the proof in[8], it follows that 
 
( ) ( ) K,1K,3

2
yxx vuhOv, =ω ,  (21) 

 
( ) ( ) K,1K,3

2
xyy vuhOv, =ω .  (22) 

 
 Combining (21) and (22), we get (19). With the same techniques above we can derive (20). The 
proof is completed. 
 Applying the similar arguments as those in Theorem 1, and using the abave lemmas, we can 
easily obtain the following superclose property. 
 Theorem 2 : Assume u and U are the solution of (2) and (6), respectively. 

( ) ( )Ω∈Ω∈ 23 ,, HuHuu ttt ,then 
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( ) ( )
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⎪
⎬
⎫
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⎪
⎨
⎧
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 In order to study the supercovergence results of the bilinear element for our problem, we 

construct the interpolation postprocessing operator hI 2  as follows: 

 Combining four adjacent small elements 321 ,, KKK  and 4K into one big element E the vertices 

of E are denote by ( )91 ≤≤ iai , the corresponding partition is denote by h2ℑ =2h. For any ( )Ω∈ 3Hv , 

we define vI h2  just the biquadratic Lagrange interpolation, i.e., for any ( ) 22
3 , QvIHv h ∈Ω∈ , and 

( ) ( ) ( )91,2 ≤≤= iavavI iih . 

 From the anisotropic theorem proposed in[5, 6, 7], we know the interpolation operator hI 2  satisfies 
the anisotropic property. Also, we can easily get the following lemma. 

Lemma 5 : For any ( )Ω∈ 3Hv , the interpolation operator hI 2  satisfy 
 

( ) vIIvI h2h2 ≤ ,  (24) 
 

h11h2 Vv,vCvI ∈∀≤ , (25) 
 

3
2

1h2 vChvvI ≤− . (26) 
 
Theorem 3 : Under the assumption of Theorem 2, there holds 
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2
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Proof : Note that uuIuIUIuUI hhhh −+−=− 2222 , form Lemma 5 and Theorem 1, we get 
 

( ) ( )
( )
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⎪
⎬
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⎪
⎨
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⎜
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The proof is completed. 
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