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ABSTRACT

Results are the most important factor in competitive sports. If we can
scientifically predict raceresults, it isbound to become aresearch focus of
the sports competitions. In this paper, we use the gray prediction method
and neural network theory to establish two prediction results model.
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Numerical experiments show that the model has high prediction accuracy.
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INTRODUCTION

How much of the human understanding of theredl
world dividesthe objectiveworldinto three systems:
insdethesystemiscompletely full of whitesystem; sys-
tem of interna information to theoutsdeworldisigno-
rant, but only through their contact withtheoutsdeworld
to beobservational study black system; the portion of
theinformationwithin the sysemisknown, another part
of theinformationisunknown, and variousfactorsin
the sysemwith uncertainrel ationship between gray sys-
tem.

Thegray prediction method isamethod to predict
the system contai ns both the known information and
containsuncertainties. It iswidely used to predict the
processof randomly ordered gray, so asto find poten-
tid law. Thegray prediction method distinguishestrends
dissmilarity between sysemfactorsby corrdationandy-
sismethod, and uses generation processing method to
processraw dataand generates strong regul arity time
series, and then establishes corresponding differential
equation model, so featuresamount prediction things

for acertaintimeinthefutureor thetimeof reachinga
characteristic quantity

With thergpid development of high-tech, theover-
al level of competitive sportshasseen an unprecedented
improvement. But understanding thelawsaffectingthe
sports performance of peopleisjust like our under-
standing of human beings both familiar and unfamiliar.
Obvioudy, from theexisting knowledge of the human,
Our awareness of sportslaw islimited. However, fac-
torsthat affect sports performanceisvaried. We al-
ready know some, and somearetill cognitive. So, from
theview of system theory, we can consider the system
of influencing Sportsperformanceasgrey sysem. There-
fore, thegray prediction method isvery useful.

Neural network isingpired by the human brainand
constitutes anetwork of information processing sys-
tems. It hashighly nonlinear dynamic processing power
and does not need to know the distribution of the data
intheform and variablerelationship. When theinput
and output rel ationship of somecomplex sysemiscom-
plex and difficult to use expression of thegeneral for-
mula, the neural network is very easy to implement
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highly nonlinear rel ationship. Theneural network has
achieved very good resultsinthefield of applied re-
search, for exampl e pattern recognition, automatic con-
trol. Inrecent years, the neural network model issuc-
cessfully appliedtotheeconomy forecast research. So,
weuseneura networksto study athletic performance
prediction.

GREY FORECASTING MODEL

Typically, inthefield of sports, orderly recording
the best result of acontinuous sportsfor severa years,
you can get aset of time serieson the athletic perfor-
mance.

In this paper, we forecast the resultstrend of the
five-year resultsof femaetrack andfield onehundred
metersrace, and the performance seesTABLE 1.

TABLE 1: Theperformance

2007 2008 2009 2010
1169 1092 1153 1121

2011
11.13

Y ear
Result

For theweakening of therandomnessof theorigi-
nal time-series, firg, theorigind timeseriesdataispro-
cessed by the dataprocessing method of accumulated
or accumulated save, the new time seriesiscalled gen-
erate columns.

Thecal culation method of onetimecumulativeis

XD (k) = x(1>(k-1)+x<°)(k)=Zk:x(‘))(i)
i=1
where X® —{x®@),x®2),---,xY(n)} is generate
columnsand
X (O ={x(0) (1)’)((0) (2),...,)((0) (n)}
isorigina timeseries.
Thecd culation method of mtimecumulativeis

k
XM (i)=Y XM

i=1

For non-negative data, the accumulating timesis
more, sotherandomnessof generated columnisweeker.
Whentheaccumulatetimesareenough, thetimeseries
ischanged from random sequenceinto non-random
sequence. At thispoint, we generaly useavailable ex-
ponential curveto approximate.

Theca culation method of repeated reduceis

XD (k)=XOK)-XxOk-1).
It subtracts both before and after data of original
time series, so we get the generate columns.

Let Xx©(), x©(2),x@3),x(4),x @ (5) beorigi-
nal time series, then we obtain the accumulated gener-
ating sequence

X® ={11.69,22.75,34.33,45.53,56.71} .
Establish model

Assumetimeseries y () hasnobservations,

X (0 :{X(O)(l), X(O)(Z),--‘,X(O)(n)} , X @ isthenew
sequence after accumulated generat-
ing, X® ={x®@),x®(2),.--,xY(n)} . Thenthediffer-
ential equationis

dx®
T+GX(1) =pn

where ¢ isdeveloped grey number and ~ isendog-
enous control grey number.

Let a= (%j be estimated parameters vector, we

usethe method of |east squaresto get

a=("8"8"Y,

where
- kowext@] 1 xO(2)
B= '%[X(l)(2)+x(”(3)] My, [ X0®
_%[x<1><n—:1)+><“’<”)] J oo

We solvethedifferential equation and then get the
prediction modd:

XD (k +1) =(x<°>(1)-ﬂ)e-“k +£
o a

, k=01,-,n.
Intheexample,

—l[x(l’(1)+x(“(2)] 1
% [ o (1) ] -7
—=IX®@@2)+ xD3)| 1
> (2 (3) _ 2856

B= =
_ 1 [x(l)(3) + X(l)(4)] 1 —39.92
2 ~51.09

1092
v |13
, " |1121], then

11.13

N e

1
-5 [x<1>(4) + ><<1)(5)] 1
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. 5320.1
B
~13685 4

- 136.85]

0.00157 0.05362

0.05362 2.08429
r _(-1537.36
B'Y,= .
44.8
From 4 - (g"8) '8"Y,, Weget
. (-0.00175
a=
11.15812
So, wehave a = -0.00175, 4 =11.15812 . Then,

6
dx>7 _ 0.00175X D =11.15812

Xx©@)=11.79, ¥ = _6350.37
a

X O (1) -% =11.79+ 6359.37 = 6371.16
We get the prediction model

X®(k +1) = 6371.16e" %7 _ 6359.37 .

Model check

Grey predictiontest usualy containsresidual test,
association test and posterior test.

Residual test

Wecadculate x® (i) by predictionmodel, and re-

peated reduce X @ (i) to generate x© (i), and then

calculate absolute error sequence and relative error

sequenceof origina sequence x @) and X ©j),i.e.

A(O)(i) = X(O)(i)— )A((O)(i)

_ A© (i)
X (0 (i)

Intheexample, weput k = 071,2,3,4 intothe predic-
tion model and then we get

(i) ,i=12--,n.

XM ={11.79,22.98,34.19,45.42,56.67}
X(© ={11.79,11.19,11.21,11.23,1124}

A© ={0,0.24,0.37,0.01,0.11}
® ={0,2.2%,3.2%,0.01%,0.97%} .

Therdativeerror islessthan 3.2%, so, accuracy
of themodd ishigher.

Association test
First, wecal culate correl ation coefficient

. min{AQ (i)} + pmax{A® (i)}

=0 () + pmax( ¥ ()

where p isresolutionand generally take p =0.5.
Inthisexample,

min{A® (i)} = min{0,0.24,0.37,0.001,0.11} = 0

max{A® (i)} = min{0,0.24,0.37,0.001,0.11}
=0.37

So, thecorrelation coefficientis
n(k) ={1,0.44,0.33,0.99,0.64} .
Second, we cal cul ate associ ate degree. Let arith-

1 n
meticmeanbe 7 =;zf7(k) .0 7 istheassociatede-
k=1
greeof x©@ (k) and X© ().

1 1
r=— g{n(k) =2 (1+ 0.44+ 0.33+ 0.99+ 0.64)
=0.68.

So, themodd satisfies p=0.5 and y > 0.6.
Posterior test

Firg, wecal culate The standard deviation of origi-
nal sequence:

\/Z[X(O)(i)—y(o)]z
S, =

n-1

2
642.33—- 5671
=95 = 035"
4

Second, we cal cul ate absol ute error sequence stan-
dard devidion:

©) (i) — A7
Sz=\/Z[A )

n-1

2
0.2.89- 0.718

=|—— 5 _o0162"
4
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Third, wecalculatevarianceratio:

Findly, wecaculatesmal error probability:
P =p{a®()- 20| < 067435, .

Let

P=ple <S,}, andwehave S, = 0.6743S, = 0.229, and
g ={0.145,0.096,0.228,0.144,0.037} .

So, wehavethat e < S,. Then, themodd isquali-
fied.

Fromthepredictionformula

6= ‘A(O) @) —Z@‘, S, = 0.6743S, . SO

XOk +1) = XD (k +1) - X P (k)
=6371 1660'00175k (60'00175 _ 1)

wetake k = 5, 0weget theresult of 2012is11.21
second.

NEURAL NETWORK PREDICTION MODEL

I ntroduction of neur al networ k

Theneura network isableto smulate the human
brain’s receive domain of partial adjustment and over-
write each, and does not have local minimum prob-
lems, and havelearning fast and highfitting precision. It
can changetheweight value of theindicators, and to
makeit more cons stent with the actua situation.

RBF neurd network isthreeforward network. The
first layer istheinput layer and iscomposed of asigna
sourcenode; thesecond layer ishidden layer: thenum-
ber of hidden unitsisdetermined by the needs of prob-
lem, andtransformation function of hiddenunitisRBF,
whichisnonlinear function; thethird layer isoutput layer,
it makestherole of theresponseto theinput pattern.
Sincethe mapping of input to output isnonlinear and
the mapping of hidden layer spaceto output spaceis
linear, sowe can grestly accel eratethelearning speed
andavoidloca minimaproblems.

The structureof RBF neura network isthefollow-
g

RBF neural network can gpproximateany arbitrary
precis on continuousfunction, particularly suitedto solve
classification problems, gpproximationisshown be ow.

————, FyurL PAPER

output
layer

i J
input layer hidden layer
Figurel: Sructure

object e

u(k)

— Vu(K)

RBF

X

Figure2: Approximation

Let X = (x,%,--,x,)" betheamount of input net-
work, H = (h,h,,---,h,,)" beradia basisvector, where
h; isGaussian basisfunctions. C; = (c;j,¢,j.,+.¢y)" iS
center vector of network j-thnode, B = (b;,b,, --,b,)"

iIswidebasevector, where b; isbasewidth parameter.

Theweight vector isw = (w;,w,,---,w,,) . S0, the out-
put of network at timek is
Ym(K)=wh =wh; +wsh, +---+w,h,.

Assume y(k) isideal output, we get the perfor-

manceindex functionis £(4<) = (y() =y ()2

Model establish

Assume X = (x, %,,--, X,) isoutput of network, so
we have minput, n output and eva uation rank. Inthe
network, connection wei ghts between the second and

thirdtiers w istheindicator weight valueof modd.
First layer: input layer
From Figure 1, we havethat theinput layer hasm
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neurons. Theinput and output is

Oljl:Xil i:lzu"'uml J::invn

Second layer: hidden layer

RBF neura network hasn evaluationranks. From
Figure 1, we know that hidden layer has mxn neu-
rons. Inthis paper, wedividetheevaluation rank into
four kinds: { A;} ={ excdllent, good, qudified, unquali-
fied}, sowetake n= 4, that isfour fuzzy subset, and
then we need four parameters a;, a,, a;,a, -

We use trigonometric function to represent the
membershipfunction u(x) , seeFigure3.

()l ‘
1 A'_ .‘I_j A3 A4

ay 4 s dy

Figure3: Membership function

When the output is I,°=0;*, i=12---,m,
j=12,---,n, thehidden layer will output all levels of
membershipvalue 0;% = A; (x;).

Third layer: output layer

Output layer mainly completes comprehensive
evauation of theinput indicators, thenweget theeva u-
ation rank and eval uation vector:

3 2
™ = Ojj

m
3 2 3
j=1

wherei=12---, mand j=12;--,n.

However, RBF neura network hasshortcomings,
for example, dow convergence, local minimum of the
energy value and so on. In order to solving this prob-
lem, weuse modified network to perfect network con-

nectionweight.

Inthe paper, we usethereverse of network to cal-
culatethe output val ue, and then get theerror of output
vaueand actual vaue, and then usetheforward of net-
work to test the obtai ned val ue and modify the connec-
tion weight value, so to achievethe purpose of reduc-
ing network error.

Let d, =t, -y, beoutput error, so theerror func-

. 1 .
tionis e, =3 (tp - yp)?. Then, weusethegradient de-

scent method of RBF neurd network learning a gorithm
to modify positiveweight vector w , soto achievethe

purposeof reducing d, andincreasingthecalculation
accuracy. Thegradient descent method isfollowing
Let
w; (K) = w; (k1) + 7h; (y(K) — Y (K)) + x(w; (k = 2) - w; (k- 2)) and
2
o [x=cil
Ab; = (y(Kk) = Y (K)) Wi i3 0
J
b; (k) =b; (k—1) +nAb; +a(b; (k-1 -b;(k-2)) .Let

Xj —Gj

2
b;

cij(k) =G (k —1)+11Acij +a.(cij(k —1)—ci]- (k-2))

where 77 islearningrate, « ismomentum factor. Fi-
nally, using Jacobian array, we get theresult

o) () b, R
1) .

= w >
ou(k)  au(k) = b;

Ay = (Y(K) = ym(k) Wi , SO

Assume Aw istheadjustedvaueof w ,usnggra
dient descent method, we get theiterative algorithm
formula

AW™ = —na;ep+ aAW D
ow

Weusetheformulaof toiterate. Whentheerroris
satisfied, weend the network training.

Application

Inthis paper, we usethe maeone hundred contest
of Olympic gameto train network. Thedataof male
one hundred contest see TABLE 2.

From TABLE 2, we get that the calcul ated value
obtained by neural network prediction model and the
actual valuehavehigher fitting accuracy.
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TABLE 2: Actual and predicted value
number first second predicted first

relativeerror

18 10 10.2 9.992 -0.07
19 9.9 10 10.05 151
20 10.14 10.24 10.03 -1.07
21 10.06 10.08 10.05 -0.09
22 10.25 10.25 10.253 0.02
23 9.99 10.19 10.09 1.008
24 9.79 9.92 9.78 -0.08
25 9.96 10.02 9.81 -1.49
26 984 9.89 9.85 0.09
27 987 9.99 9.81 -1.57
28 985 9.86 9.71 -1.38
CONCLUSION

In this paper, we use the gray prediction method
and neural network theory to establish two prediction
resultsmodd.

Sincetheimpact of competitive sportsresultscan
be attributed to the gray system, the gray prediction
method can be used to forecast the future of sport
achievements. Weneed to notethat: calculation should
beretained long enough significant digitsand reduce
caculaionerror.

Competitive sport isamulti-factor, multi-level,
multi-target linkagesand mutua restraint system. Itspre-
diction of theresultsisvery difficult. Traditional fore-
casting methodsisbased on thediscreterecurs vemodel
and has obviouslimitation. However, neura network
identificationisnot subject to thelimitationsof thenon-
linear model. The neural network forecasting model
Comprehensively observes, andyzesand forecaststhe
development and changes in the system, so that the
accurecy of thepredictionisgrestly improved.
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