
[Type text] [Type text] [Type text]

2014

© Trade Science Inc.

ISSN : 0974 - 7435 Volume 10 Issue 15

BioTechnology

An Indian Journal
FULL PAPER

BTAIJ, 10(15), 2014 [8768-8774]

The Java virtual machine in a thread migration
of distributed application

Guanghui Zhu

Institute of Applied Technology, University of Science and Technology Liaoning,
Anshan, 114011, (CHINA)

ABSTRACT

With the rapid development of Internet, the role of the Java virtual machine technology is
also becoming increasingly important. First of all, the Java virtual machine for the
underlying implementation of cross-platform, for the implementation of the underlying
heterogeneous system shielding the details of the infrastructure. Second, the
implementation of the Java virtual machine can according to the different application
scenarios and the underlying infrastructure do different optimization, and transparent to
upper layers at the same time, to achieve the same code compile once, in a different
environment to realize the execution efficiency of the optimization. In addition, the Java
virtual machine to provide automatic memory management, garbage collection
mechanism and characteristics of dynamic link completely, can effectively reduce the
complexity of the design and implementation of the large system. The Java virtual
machine because of its many excellent properties, are out of pure Java language execution
environment, the role of general platform as the next generation. Based on migration of
thread are studied in this paper to realize distributed Java virtual machine, on the basis of
theoretical issues, the design and implementation of a typical representative system are
analyzed, put forward in the Java virtual machine level to realize distributed computing
framework based on the migration of threads, realized the distributed prototype single
Java virtual machine, and to actually use performance test and evaluation, main work
includes: the thread of distributed Java virtual machine migration mechanism; Task
migration when the load balancing strategy; Across nodes of transparent access to
distributed Java heap; Java thread synchronization mechanism under distributed
environment; Under the distributed environment of automatic memory management and
garbage collection; Single Java performance test and evaluation.

KEYWORDS

Distributed computing; Parallel computing; The Java virtual machine.

BTAIJ, 10(15) 2014 Guanghui Zhu 8769

INTRODUCTION

 With the continuous development of the Internet, the importance of distributed computing is becoming more and
more prominent. The Java virtual machine for the upper application blocks at the bottom of the computing platform
implementation details, very conducive to the development of distributed system based on heterogeneous infrastructure. One
Java multi-thread programming model and integrating object-oriented model, provides a complete set of effective mechanism
of multithreaded programming. Due to native multithreaded Java program, as well as thread between low said features, this
paper argues that can is the smallest unit of execution context with Java thread, to break up a Java program. Due to the Java
virtual machine for the entire life cycle fully managed, Java thread based on Java virtual machine, can be a good Java thread
transparent migration, the Java program into a distributed parallel programs, can effectively improve the parallelism of the
program and performance. Java memory model and the automatic memory management mechanism to simplify memory
management of distributed system is helpful.
 Based on the in-depth study of distributed Java virtual machine, on the basis of theoretical issues, designed a
distributed prototype singleJava Java virtual machine, to the upper application provides transparent distributed infrastructure
abstraction layer. On the basis of singleJava, Java programmers can completely transparent like Java virtual machine in the
single node write debug program, compiled Class files directly after the completion of release to singleJava execution.
SingleJava to implement the task based on the migration of threads concurrent tasks migration and parallel execution of
distributed computing systems.
 SingleJava system source code to use and modify the open source Java virtual machine implementation JamVM
Class file parsing function, single node execution engine. In use, modify the JamVM basis function on the basis of the above,
realize the distributed Java virtual machine prototype based on thread migration. As shown below is singleJava compared
with single node architecture of the Java virtual machine. Single node the class loader is responsible for the Java virtual
machine access to Java class bytecode. Get Java classes, analytical, links, and initialization, Java classes are divided into two
parts, one part is the static attribute value preservation area, the other part is the definition of properties, methods, area, the
static attribute values stored in the Java heap, all attributes and methods defined in the MethodArea. Invoke the execution
engine reading Method, after the completion of all methods defined in the Area began to implement a Java Method, will be
calculated during the period of the intermediate results stored in thread stack, instantiation of the object in the Java heap. As
shown in Figure 1.

Figure 1: Java virtual machine (single node system architecture)

 SingleJava split the Java virtual machine execution engine and the Java heap, the execution engine distributed to
multiple nodes, can execute multiple threads at the same time. Local heap on the various nodes communicate with each other,
form the global distributed Java heap, transparent execution engine provides transparent access across nodes of the pile.

DESIGN CONCEPTS AND SYSTEM ARCHITECTURE

Design concept
 To provide completely transparent to the upper distributed infrastructure, singleJava design based on Java
distributed general computing platform, on the one hand, let Java programmers from writing multithreaded applications,
launch applications, to finally start the application execution can be completely like Java virtual machine on a single node,

8770 The Java virtual machine in a thread migration of distributed application BTAIJ, 10(15) 2014

completely managed by singleJava thread distributed execution. SingleJava, on the other hand, in an attempt to support zero
modifying legacy code executed directly, do write once compiled, direct execution. To this end, the singleJava adopted code
dynamic deployment mechanism and management share data by using distributed Java heap.
 Using distributed Java heap can let all nodes are like access to the local Java heap access global objects in a
distributed environment, global data synchronization when reading and writing done, ensure the integrity and consistent with
the global object. SingleJava belongs to tight said in distributed computing systems, system communication mode between
internal nodes, according to the analysis of the communication between nodes more frequently, improve the request
processing throughput between nodes, has a key effect on the system overall performance. Therefore, singleJava USES the
request processing thread pool technology, singleJava management mechanism design is concise, using a single MASTER
node architecture[2].

System architecture
 SingleJava system architecture as shown in Figure 2, among them, the single MASTER nodes are responsible for the
management of the cluster, the WORKER node contains execution engine, is responsible for the implementation of specific
Java code. All maintenance WORKER on the MASTER node information, system initialization when the WORKER nodes
to the MASTER node initiated the registration request, record and maintain all the WORKER MASTER node information,
and the MASTER node is responsible for the management of WORKER node.

Figure 2: SingleJava system architecture

 After completion of system initialization, triggered by the user in the MASTER node from the command line Java
application execution MASTER will first read the main class of the class files, to obtain the main class class file sequence of
bytes, after the completion of the reading users with command line parameters, the generated command line parameter
sequence of bytes, after give priority to the Reference class distribution. Last of all the WORKER nodes choose the earliest
registered nodes, launched the REQ - the MAIN - a TASK Request, the Request contains the MAIN class file sequence of
bytes, command line parameters, and the MAIN class Reference. After receipt of the Request the WORKER nodes will parse
the main class sequence of bytes, generate ClassBlock structure. Launched an REQ_NEW - THREADRequest the MASTER
node, after the completion of the MASTER node, after receipt of the Request for the Thread to create a new Thread
description structure, and distribution of global Thread identifier Threadid, finally will Threadld SUCC responses as RSP
reply to WORKER nodes. After WORKER node receives RSP - SUCC response, find the main class ClassBlock structure.

IMPLEMENTATION

 SingleJava adopts the modular system design and code organization mode to break down the complexity of the
system. Top-down divides the system into several modules, step by step to segmentation system, organization and packaged
[3]. SingleJava in accordance with the rules of good design, said the intensive content of the code to a module, and divide the
development tasks. Interact through fixed call interface between modules, in addition to the internal implementation of the
module's internal design for free play.
 SingleJava code in accordance with the six modules, three levels to organize, as shown in Figure 3.

BTAIJ, 10(15) 2014 Guanghui Zhu 8771

Figure 3: SingleJava module organization

Distributed thread migration mechanism of Java virtual machine
 Thread creation and migration work are done by threading module, the threading module principle of Java virtual
machine. The start () method, the Java virtual machine started to create a new Thread, first create a Thread to describe
structure, link to system Threads linked list, and then create a new thread, Thread and private variable thread_self pointing at
the newly created Thread structure. All completed, call execution engine start executing Thread.
SingleJava threading module in a single thread management and the mechanism of the same node, on this basis, the
realization of parallel computing based on thread migration: Java program execution ThxeacLstartO method need to apply to
the MASTER node to create a new thread, the WORKER nodes selected by the MASTER node, moving a new thread to
execute the WORKER nodes. Threading module need to realize the function, on the basis of the implementation of tasks at
the same time of the load balancing strategy[4].

The task migration of load balancing strategy
 System to the WORKER node number of the current thread of execution at the same time, the basic measure for
calculating load when choosing the WORKER to task migration, first of all, according to the WORKER the number of nodes
in the current thread in ascending order, the smaller the number of threads of the WORKER nodes the higher priority. Based
on this, will give priority to the recently completed a thread of the WORKER nodes distribute new tasks. The WORKER
nodes REQ_THREAD - a TASK request processing functions can be carried up a new thread, when after the completion of
the new thread execution, request to report to the MASTER node through REQ_THREAD - FINISHED thread the end of the
message, and indicate the complete thread Threadld in the request. MASTER node according to Threadld delete records in
the list of Threads, thread will WORKERS number of Threads in the list of minus one, the latest completion time and update
the corresponding[5].

Transparent access to distributed across nodes Java heap
 Namely heap object module module, responsible for the execution engine provides transparent across the node
object access, regardless of the object is in the local or remote on physical nodes on physical nodes, object modules provide a
unified access interface to the execution engine. JamVM, for example, the principle of single node object module of the Java
virtual machine as shown in Figure 4, is in the charge of this Class files, and save in the form of a byte array. Analytical,
links, and then in turn calls the initialization function, to generate the ClassBlock structure (the basic information of the save
the class definition, attribute definition, method and constant pool) and the Statics structure (used to hold all the static
attribute values), and provide the ClassBlock pointer to execution engine, used to access the ClassBlock structure[6].
 SingleJava Object module based on this, to achieve the transparent across nodes access the Class/Object. Includes
the following contents: across nodes class loading, the WORKER nodes from the local system class for class files, to the
MASTER node requests for user classes class files; Using a global identifier instead of the pointer as the Class/Object global
references; Using a global reference implementation of global Class/Object to read and Write, use the Write - Invalidate
agreements to ensure data consistency and integrity[7].
 Java language native support multithreading, Java virtual machine memory model is the design in the perspective of
thread. The data in the Java heap is accessible to all threads, Java heap was also called main memory, each thread has its own
private memory, known as the working memory. Each method is called began to start execution will create a method, is used
to store method of the call stack, call parameters and local variables and the operand stack, pressure into the thread of the call
stack when the method returns, the method frame has been playing the stack.
 SingeJava using Java virtual machine memory model the characteristics of low coupling between threads, thread
work memory are independent of each other, do to the Java heap distributed implementation. All Object/Statics access need
first access to the local heap, if local heap mismatch, is by visiting the Object/Statics OWNER node local heap, access to
data, all nodes in the respective local heap constitutes the distributed Java heap[8], and its structure as shown in Figure 5.

8772 The Java virtual machine in a thread migration of distributed application BTAIJ, 10(15) 2014

Figure 4: The main principle of JamVm object module

Figure 5: Java virtual machine memory model

 An Object/Statics OWNER node with the following rules to determine: if the Object/Statics has not taken any write
operations, then the Object/create node is the OWNER of the Statics; If the Object/Statics have been executed write
operations, is the latest to perform the write operation is the OWNER of the node.
 Distributed Java heap through the Write - Invalidate agreements to protect the data consistency and integrity.

Java thread synchronization mechanism under distributed environment
 Java language native support multithreading, and have perfect thread synchronization mechanism, including:
Suspend - Resume mechanism, Synchronized mechanism and Wait - Notify mechanism. SingleJava achieved in a distributed
environment, across nodes of a full set of thread synchronization mechanism. Java language native support for multithreaded
programming, provides a complete thread synchronization between the mechanism of strong, Java thread from creation to

BTAIJ, 10(15) 2014 Guanghui Zhu 8773

end with a total of six kinds of state, are: NEW, RUNNABLE, BLOCKED, WAITING > TIMED - WAITING and
TERMINATED. The meaning of their status as shown. Threads in the above the conversion relationship between each state
as shown in Figure 6.

Figure 6: Java thread state transformation

Under the distributed environment of automatic memory management and garbage collection
 The memory management module is responsible for the distributed Java heap space allocation and garbage
collection. JamVm virtual machine to achieve the first matching algorithm based on the heap space management and
recycling mechanism based on the reference count. SingleJava using original heap management algorithm to manage node
local heap space, on this basis to realize the distributed garbage collection. Distributed garbage collection in accordance with
the local garbage collection and global scope is divided into different garbage collection two levels[9].
 The WORKER nodes at startup that is according to the system configuration, to the system requests a piece of
memory space, and save the heapend heapbase starting position and end position. Object/Statics are stored in a pile of local,
local heap memory allocation interfaces provided for other module, local in the heap memory blocks allocated in accordance
with the 8 byte alignment. Local heap by a mutex heaplock is responsible for the protection, each time allocated from the
heap space to obtain the lock, to start operation, after operation to release the lock. As shown in Figure 7.

Figure 7: Local heap space

 Java virtual machine to provide the upper rubbish, is responsible for automatic recycling useless heap space. There
are two kinds of recycling the timing of the program is running, the first is triggered by the user, the user by calling System.
GcO approach requires the Java virtual machine began to start recycling. Another kind is triggered by heap space allocation
failure, namely the user attempts to new space allocated on the heap space to store the Object/Statics heap space is
insufficient, will trigger the system for garbage collection.

Single Java performance test and evaluation
 Performance testing using Virtual Box Version 4.2.4 r81684 Virtual machine, a total construction of the eight node
configuration in the same experiment. Multi - threaded Benchmarks will be divided into two parts. The first part is the core
algorithm is commonly used in large-scale application of the test. Test items were Series, LUFact, SOR;The second part is
the simulation test of large-scale applications, in order to improve the compatibility of test case, test omitted the I/O and
graphical interface, highlighting the Java execution environment performance test[10].
 The above performance test data show that singleJava system computationally intensive parallel tasks in the
implementation of the performance is better.

8774 The Java virtual machine in a thread migration of distributed application BTAIJ, 10(15) 2014

CONCLUSION

 Based on the distributed system are summarized and on the basis of current situation of the development of the Java
virtual machine, puts forward the layer in the Java virtual machine based on thread migration implementation of distributed
computing framework, and further analyzed the distributed application requirements and technical advantages of Java virtual
machine. On this basis, this paper implements the distributed singleJava Java virtual machine prototype based on thread
migration. By singleJava system architecture and the analysis of test data, this paper reflects on the singleJava in the design
and implementation of the existing shortcomings. In the future work should focus on how to design the WORKER nodes of
main preparation mechanism, let the failure of the WORKER nodes automatically withdraw from the system topology and
choose to substitute the WORKER nodes continue to execute computing tasks, and on this basis to realize the system
topology structure of dynamic management, improve the reliability of the whole system and fault recovery capability.

REFERENCES

[1] Von E Thorsten; Active messages: A mechanism for integrated communication and computation, Conference
Proceedings - Annual Symposium on Computer Architecture, 256-266 (1992).

[2] A Baratloo; Charlotte: metacomputing on the web, Future Generation Computer Systems, 559-570 (1999).
[3] M Baker, B Carpenter, G Fox, S H Ko, S Lim; mpiJava: An object-oriented java 98 interface to MPL Lecture Notes in

Computer Science, 1586: 748-762 (1999).
[4] M Baker, Southsea; mpiJava: A Java MPI Interface. http://acet.rdg.ac.uk/~mab/Papers/EuroPar-98/, 1998, Accessed on

June (2012).
[5] EPCC, The Java Grande Forum Benchmark Suite, http://www2.epcc.ed.ac.uk/computing/research_activities/java_

grande/index_L.html, Accessed on June (2012).
[6] P Michael, Z Matthias; JavaParty - Transparent Remote Objects in Java, Concurrency Practice and Experience, 9(11),

1225-1242 (1997).
[7] S Deering; Host Extensions for IP Multicasting. IETF RFC 1112,1989 [27] J Archibald, Jean-Loup B.Cache coherence

protocols:evaluation using a multiprocessor simulation model, ACM Transactions on Computer Systems, 4(4), 273-298
(1986).

[8] P Jouppi; Cache write policies and performance, ACM SIGARCH Computer Architecture News, 21(2), 191-201
(1993).

[9] N Sankaran; A bibliography on garbage collection and related topics, ACM SIGPLAN Notices, 29(9), 149-158 (1994).
[10] Hans-J, Boehm; The space cost of lazy reference counting, Proceedings of the ACM SIGPLAN-SIGACT Symposium,

210-219 (2004).

