
INTRODUCTION

The Kerr solution to the axially-symmetric Einstein
field equations is generally accepted as corresponding to a
rotating body. It is characterized by two parameters, the
angular momentum per unit mass a and the mass m, and is
generally discussed in Boyer-Lindquist coordinates[1]. These
coordinates are very convenient for a variety of purposes,
but make it difficult to visualize the actual shape of the
infinite red-shift surfaces�as distinct from the event hori-
zons corresponding to null surfaces that act as one-way
membranes. For example, depictions of the relation of
the inner infinite red-shift surface to the ring singularity are
often glossed over or simply not shown as interest is gen-
erally centered on the ergosphere, the region between the
horizon and the outer infinite red-shift surface, where the
time-like Killing vector associated with the solution be-
comes space-like. Cartesian coordinates in Minkowski
space, otherwise known as Kerr-Schild coordinates, offer
a far more understandable representation of the infinite
red-shift surfaces.

Observers at infinity follow the trajectories of the time-

like Killing vector and thus have global significance. Be-
cause the components of the metric tensor are indepen-
dent of time, this Killing vector takes the form 

t
 = (1, 0,

0, 0). The g
00
 component of the metric tensor is then given

by |
t
 |2. The infinite red-shift surfaces are found by set-

ting g
00

 = 0. 
t
 is null on these infinite red-shift surfaces,

but�in the case of the Kerr metric�the surfaces them-
selves are not null and consequently not event horizons.

For stationary metrics the infinite red-shift surfaces
will be null surfaces only if 

t
 is hypersurface orthogo-

nal�which, of course, it is not, since if it were the metric
would be static. The infinite red-shift surfaces may still
exist even when the event horizons do not.

In what follows, 3-dimensional representations of the
infinite red-shift surfaces will be displayed for different,
interesting values of the parameters a and m, along with
the relation of these surfaces to the event horizons when
they exist. The Mathematica program used to generate
these figures is given in the Appendix so that readers may
generate their own figures for different values of the pa-
rameters. This is followed by a discussion of the infinite
red-shift surfaces for the Reissner-Nordström and Kerr-
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Newman solutions.

THE HORIZONS AND INFINITE RED-
SHIFT SURFACES

Kerr-Schild coordinates were used by Kerr in one of
the few faithful�albeit relatively forgotten�representa-
tions of the Kerr solution�s infinite red-shift surfaces avail-
able in the literature[2]. At the time these surfaces were
referred to not only as the analogue of the Schwarschild
sphere but also as null surfaces, and although the time like
Killing vector does become null on these surfaces, they
are not null surfaces and therefore do not act as a one-
way membrane.

Vishveshwara[3] used the following argument to show
that the surface on which the Killing vector becomes null
will be a null surface if and only if the rotation vector of
the Killing vector field vanishes on the surface: define the
normal vector, n

a
, assumed not to vanish, on the family

of hypersurfaces 
a
a = Const. defined by the Killing vec-

tor 
a
 (indices range from 0-3). Then for stationary metrics

 n b nb = 1
2

 a 
a
b;c 

b;c
 r 

r
,

where

 


r =  g
 1

2 
rspq

 s  p;q
.

For n
a
 to be null when 

a
 is null, 

r
 must vanish. Now,

the r-component of  (called in various places in the litera-
ture the �rotation vector�, the �angular velocity four-vec-
tor� and the �vorticity�) is proportional to 

[s
 

p;q]
, whose

vanishing implies the hypersurface orthogonality of 
a
, in

which case the metric would be static.
The infinite red-shift surfaces will be referred to here

as null Killing surfaces to clearly distinguish them from the
null surfaces corresponding to the horizons.

In Kerr-Schild coordinates, the Kerr solution is given
by[4]

 
ds2 = dx2 + dy2 + dz2

 dt
2

+
2m 



 az

k  dx 2
, (1)

where k

 is the null vector field

 k  dx = dt + z
 dz +





 a 

xdx + ydy

+ a


 a 

xdy  ydx . (2)

The surfaces of constant  are confocal ellipsoids of
revolution the equation for which is derived from the de-
fining relations for oblate spheroidal coordinates:

 x = a cosh cos cos

y =a cosh cos sin

z = a sinh sin

Direct computation gives

 x2 + y2

a2 cosh
2


+ z2

a2 sinh
2


= 1.

Setting 2 = a2 sinh2 results in

 x2 + y2



 a

+ z2




= 1. (3)

 is implicitly determined by this equation.
A ring singularity is located at R := (x2 + y2)1/2 = a and

z = 0 (where  = 0). This ring singularity bounds a surface
having the character of a quadratic branch point in the
complex plane; that is, if one passes through the surface
from above (entering a region where, in Boyer-Lindquist
coordinates, the coordinate labeling the oblate spheroidal
surfaces of constant r is negative) and were to loop around
the ring singularity to again pass through the surface from
above, one would return to the original starting space.
The Kerr solution in the negative r region is identical in
structure to the positive r part with m being replaced by its
negative.

To find the null Killing surfaces, one sets the g
00

 com-
ponent of the metric tensor in Eq. (1) equal to zero. The
resulting equation for the null Killing surfaces is

  4
 2m 3 + a 2z 2 = 0 (4)

Equation (3) is now solved for  in terms of R and z
and any one of the four solutions substituted into Eq. (4).
The resulting equation is then solved for z in terms of m,
a, and R. There are eight solutions, only four of which are
real. These correspond to four pieces of the null Killing
surface. They can then be plotted together to obtain the 3-
dimensional representation given in figures 1, 3, and 4.

The first example is for m  a where the null Killing
surfaces are distinct. This is shown in figure 1. Kerr�s

Figure 1 : The Kerr null Killing surfaces for m = 1.02 a. The
ring singularity is at the cusp of the inner surface. The figure
shows z, plotted as a function of R for  restricted to the range
0    3/2 so as to reveal the inner surface.
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The case for a = m, with m then set equal to unity is
shown in figure 3. For this case, r


 and r


 coalesce into a

single horizon located between the two null Killing sur-
faces. The horizon meets these surfaces at the two points
equidistant from the origin on the z-axis where the null
Killing surfaces also touch. The ring singularity, where the
inner Killing surface terminates, remains hidden behind an
horizon for this extreme case. This is shown in figure 2(b).

The final case is that of a > m where the null Killing
surfaces open at the z-axis allowing the singularity at z = 0,
and R = 1 to be seen from outside the surfaces. For this
case, shown in figure 4, the horizons do not exist.

In all three cases, for plotting purposes, a has been set
equal to one.

Because of this bizarre behavior, many consider the
case a > m, or others like it�to be discussed below, to be
unphysical and believe that naked singularities will always
be hidden behind event horizons. However, this Cosmic
Censorship hypotheses has not yet been proven[6-11].

The metric for the charged Kerr solution[12,13], known
as the Kerr�Newman solution, is similar to Eq. (1).

paper (2) shows a cross section of both this figure and
figure 4. The horizons r


 = m  (m2 � a2)1/2, where r is the

Boyer-Lindquist coordinate, are both located between the
two displayed null Killing surfaces. The inner horizon r



is tangent to the inner null Killing surface at the two points
equidistant from the origin on the z-axis where the sur-
face intersects that axis; and r

+
 is similarly tangent to the

outer null Killing surface where it meets the z-axis (see
figure 2(a)).

Figure 2 : (a) The horizons r and r shown in relation to a cross-
section of the null Killing surfaces of Figure 1; (b) The horizons
r and  coalesce into a single horizon when a = m.

For the case of a > m, where the horizons do not
exist and the null Killing surfaces open up at the poles, the
central region has the properties of a time machine[5]. This
is a result of the fact that passing through the surface
bounded by the ring singularity brings one into a region
where the vector  is time-like. In principle, one could
cross the surface, travel in time by going around the z-
axis, and then return through the surface and arrive at the
starting point before the trip began.

Figure 3 : The null Killing surfaces of the Kerr solution for a =
m. Note that these surfaces meet at two points equidistant
from the origin on the positive and negative z-axis. The ring
singularity remains at the cusp of the inner surface at R = 1
and z = 0.

Figure 4 : The Kerr null Killing surface for a > m. Here m =
0.98 a. The ring singularity is again at the cusp of the inner
part of the surface.
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ds2 = dx2 + dy2 + dz2

 dt
2

+
2m 

 e





 az 

k  dx
2
, (5)

where e is the charge,  is again given by Eq. (3), and the
null vector is the same as in Eq. (2). The ring singularity
remains at R = a.

As before, the equation for the null Killing surfaces
is obtained by setting g

00
 in Eq. (5) equal to zero. This

results in

  
 2m 

 e 


 a z  = 0. (6)

This equation is somewhat more challenging to solve
than Eq. (4). Again, Eq. (3) is solved for  in terms of R
and z and one of the four solutions substituted into Eq.
(6). There are nine solutions to the resulting equation: one
zero, four imaginary, and four that again correspond to
pieces of the null Killing surfaces. Three dimensional ren-
derings of these horizons do not add anything substantial
to those already shown for the uncharged Kerr solution.
However, for certain choices of the parameters m, a, and
e, either one or both of the null Killing surfaces may not
exist, and the relationship of the ring singularity to these
surfaces changes.

Insight into the nature of the null Killing surfaces can
be gotten by comparison with the Reissner-Nordström
(charged Schwarzschild) solution, the metric for which is
given by

 
ds2 =  1  2m

r + e2

r2 dt
2

+ 1  2m
r + e2

r2

1

dr2

+ r 2 d
2

+ sin
2
 d

2
, (7)

where e is again the charge.
This metric generally has two null Killing surfaces,

which are located at r

 = m  (m2  e2)1/2. Both are also null

surfaces and consequently event horizons. For e2 = m2, there
is only one horizon. Note that the gravitational effect of
the charge on this spherically symmetric metric falls off as
1/r2 whereas that of the mass only as 1/r. If e2 > m2, the
metric has no horizons or null Killing surfaces but is non-
singular everywhere except for the irremovable singularity
at the origin[14]. The interesting thing about the singularity
is that it is time-like so that clocks near the singularity run
faster than those at infinity. For e2 slightly greater than m2, a
clock approaching the radius where the horizon would be
located for e2 = m2 slows down compared to those at
infinity and then begins speeding up after it passes what
would be the location of the e2 = m2 horizon until it reaches
r = e2/2m, where the metric takes the Minkowski flat-
space form. A clock continuing to approach the singular-
ity from this radius runs faster than one at infinity. This can
be seen from figure 5.

The figure shows that, unlike the Schwarzschild solu-
tion, the singularity at r = 0, for the case of e2 > m2, is time-
like and repulsive�in that time-like geodesics will not reach
the singularity.

In the case of the Kerr-Newman metric, consider the
equatorial plane where z = 0. From Eq. (3), it is readily
seen that for z = 0 the solution to this equation is  = (R2

� a2)1/2. Equation (6), for z = 0, and the latter value of 
gives the following fourth order equation in R for the
location of the intersection of the null Killing surfaces
with the equatorial plane:

 R
2
 a2

 2m R
2
 a 2 + e2 = 0. (8)

The relevant solutions to this equation are

(9)

Similar to the case of the Reissner-Nordström solu-
tion, the Kerr-Newman metric has no null Killing surfaces
for e2 > m2, but it also has none for e2 = m2 and a > 0,
when the two intersection points with the equatorial plane
coalesce. For this case, none of the solutions of Eq. (6)
are real. An horizon exists for the Kerr-Newman metric
only if m2  e2 + a2. For a = 0, the Kerr-Newman metric
reduces to that of Reissner-Nordström.

For e = 0, the solutions of Eqs. (9) reduce to R

 = a

and R
+
 = (a2 + 4m2)1/2, corresponding to the Kerr solu-

tion, and for a = 0 we get the Schwarzschild result.
On the equatorial plane, g

00
 for the Kerr-Newman

solution is given by

 
g00 =

2m 3
 e2


2


4  1. (10)

Using  = (R2 � a2)1/2, g
00

 becomes

 
g00 = R

2
 a2

 2m R
2
 a2 + e2

a2
 R

2 . (11)

Figure 5 : g
00

 is shown as a function of r for the Reissner-
Nordström solution for e2 = 1 and m = 0.98. Note that g

00
 comes

close but does not touch the r-axis indicating that no horizon
or null Killing surface exists for this choice of the parameters
e and m.
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SUMMARY

While an enormous literature has appeared since the
discovery of the Kerr and Kerr-Newman solutions in the
1960s, the visualizations given here should add additional
insight into these solutions. Perhaps the most interesting
thing to come out of this study is the effect of the pres-
ence of charge on the null Killing surfaces when
transitioning from the Kerr to Kerr-Newman solution. In
the case of the Kerr solution the inner null Killing surface
terminates at the ring singularity. When charge is added,
this relationship is severed and the null Killing surfaces and
ring singularity no longer have points in common. The
singularity also becomes time-like. If the cosmic censor-
ship hypothesis proves to be false, or have only limited
applicability, the extreme Kerr or Kerr-Newman solutions
could prove to have astrophysical implications.

The toroidal null Killing surface of figure 7, coaxial
with the ring singularity but all parts of which lie at a greater
radius than the singularity, is quite thought provoking. The
torroid encloses the region of space-time where the time-
like Killing vector becomes space-like.

The purpose of this paper is also pedagogical. Exact
solutions to the Einstein field equations play an important
role in the teaching of General Relativity. Of these, the
solutions considered above�in addition to the
Schwarzschild solution�are perhaps the most important.

If a = 1, and the other parameters are chosen to cor-
respond to the Reissner-Nordström solution where e2 = 1
and m = 0.98, neither of the intersection points of Eqs. (9)
exist. The plot of g

00
 looks essentially the same as figure 4,

except that g
00
 approaches negative infinity at R = 1, where

the ring singularity is located, rather than 0 as was the case
for the Reissner-Nordström solution. Had m2 been cho-
sen to be slightly greater than e2, the intersection points of
the null Killing surface would approach the point where
the curve shown in figure 6 almost touches the R-axis
near R = 1.4. Note that, like the Reissner-Nordström so-
lution, the ring singularity at R = 1 is time-like.

Figure 6 : g
00

 is shown on the equatorial plane as a function of
r for the Kerr-Newman solution for a = 1, e2 = 1, and m = 0.98.
Note that g

00
 comes close but does not touch the R-axis indicat-

ing that no null Killing surface exists for this choice of the
parameters e and m. g

00
 asymptotically approaches negative

infinity as R  1, the location of the ring singularity.

One of the most interesting cases for the Kerr-
Newman solution occurs when a2 + e2 > m2 and m > a >
e. The null Killing surface is then a toroid about the z-axis.
The time-like Killing vector becomes space-like within this
toroid. The relationship of the ring singularity to the null
Killing surface is seen in figure 7 to significantly differ from
that of the Kerr solution where at least one part of the
surface terminates at the ring singularity. Here the ring sin-
gularity is outside the torroidal surface. The presence of
charge not only makes the ring singularity time-like, but it

Figure 7 : The null Killing surface for the Kerr-Newman solu-
tion with m =1.02, a = 1, and e = 0.9 is obtained by rotating this
figure about the z-axis. The time-like Killing vector becomes
space-like within the toroid. The ring singularity is located at
R = 1.

severs the relation between the singularity and the null Kill-
ing surface.

Even for the case a2 + e2 = m2, where the ring singu-
larity is enclosed by the null Killing surfaces, as well as an
event horizon, the surface does not meet the ring singular-
ity as it does in the case of the uncharged Kerr solution
shown in Figure 1. This is shown in figure 8.

Figure 8 : The null Killing surface for the Kerr-Newman solu-
tion with m =1.34536, a = 1, and e = 0.9. Note that the inner
surface toes not terminate at the ring singularity located at R
= 1, but has an R value, when z = 0, of about 1.05 (compare to
Figures 1, 3, and 4). The single event horizon for a2 + e2 = m2 is
also shown (compare with figure 2(b)).
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It is hoped that this material will found to be a useful
complement the material found in most textbooks.

APPENDIX

In doing the calculations and plotting the null Killing
surfaces for the Kerr solution I used Mathematica®, Ver-
sion 3.0. As a result, it may not be directly executable with
later versions of Mathematica®. While the program could
be made more elegant, it will be relatively easy to modify
in the form given below.

The program for the 3-dimensional plots follows:
Solve[4+ (a2 � z2 � R2)2  a2 *z2 = = 0, ];
 /. %; (*This command makes the solutions of the

above equation into a list*)
Part
Solve[4 � 2*m*3  a2 *z2 = = 0, z]
(*The output cell from the above calculation should

be converted in format to an input cell to avoid repeating
the calculation for the a > m and m > a cases. Call the
resulting input cell INPUT. The output from each reentry
of this cell may be suppressed.*)

(*The case a = m = 1*)
% /. a -> m;
% /. m -> 1;
z /. %
h1 = %
Do[f[i] = Part[h1,i], {i, 5, 8}];
r = {0, 0, 0, 0, 1, 1, 2.236067977, 2.236067977};
<<Graphics�ParametricPlot3D�
Do[g[i] = CylinderPlot3D[f[i], {R, 0, r[[i]]}, {phi, 0,

3Pi/2}, DisplayFunction -> Identity], {i, 5, 8}]
g[9] = Show[{g[5], g[6], g[7], g[8]}, DisplayFunction

-> $DisplayFunction]
Show[%, Boxed -> False, Axes -> False]
(*The case a > m with a = 1*)
(*Enter INPUT*)
% /. m -> a/1.02;
% /. a -> 1;
z /. %
h2 = %
Do[f[i] = Part[h2, i], {i, 5, 8}];
q = {0, 0, 0, 0, 0.2746197, 0.2746197, 0.2746197,

0.2746197}
r = {0, 0, 0, 0, 0.999, 0.999, 2.20105, 2.20105};
Do[g[i] = CylinderPlot3D[f[i], {R, q[[i]], r[[i]]}, {phi,

0, 3Pi/2}, DisplayFunction -> Identity], {i, 5, 8}]
g[9] = Show[{g[5], g[6], g[7], g[8]}, DisplayFunction

-> $DisplayFunction]
Show[%, Boxed -> False, Axes -> False]
(*The case m > a with a = 1*)
(*Enter INPUT*)
% /. m -> 1.02 a;

% /. a -> 1;
z /. %
h3 = %
Do[f[i] = Part[h3, i], {i, 5, 8}];
r = {0, 0, 0, 0, 0.999, 0.999, 2.2719, 2.2719};
Do[g[i] = CylinderPlot3D[f[i], {R, 0, r[[i]]}, {phi, 0,

3Pi/2}, DisplayFunction -> Identity], {i, 5, 8}]
g[9] = Show[{g[5], g[6], g[7], g[8]}, DisplayFunction

-> $DisplayFunction]
Show[%, Boxed -> False, Axes -> False]
(*Note: When plotting values for a and m other than

those given above, if the plot ranges in the lists q and r are
incorrectly determined the plots may have gaps or, if an
imaginary number results, the plot command will not
work. The correct numbers for the lists q and r that deter-
mine the plot ranges can be found by printing out f[i],
where i = 5, 6, 7, 8 and then using the command % /. R -
> (some appropriate number). The number can be varied
so as to obtain a real values for the range of each of the
f[i] that also gives a complete plot. Approximate ranges
can be determined using the command Do[T[i] =
Table[{R, f[i]}, {R, 0, r[[i]], 0.01}], {i, 5, 8}] after entering
trial lists with ranges great enough to cover the whole plot
region. *)
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