
The generalized Jarzynski�s equality

ABSTRACT

In this paper, we will show that Jarzynski�s equality is only suitable to the classical system that remain in quasistatic
equilibrium with the heat reservoir through the switching process. We then give out a generalized formula in the
linear regime for the rapid varying nano-system.  2013 Trade Science Inc. - INDIA
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In 1997, Jarzynski proposed an equality[1] which
relates the equilibrium free energy difference G  with
the nonequilibrium work W :

  )exp(ln1 WG  , where <�> denotes

the average over all irreversible paths z(t) in phase space,

TkB/  with k
B
 the Boltzmann constant and T the

temperature, then Liphardt et al.[2] carried out an ex-
periment of stretching RNA molecule to check
Jarzynski�s equality (JE) in 2002. Based on JE, Crooks
further presented a relation (Crooks relation)[3,4] which
gives complementary information on the dissipated
work. JE was also established within the formalism of
master equation[5]. Several authors had given their com-
ments on JE[6,7]. It should be pointed that JE is only
applicable to the finite classical system that remain in
quasistatic equilibrium with the reservoir.

The average  )exp( W  is defined as[1]

  )]t,z(wexp[)t,z(dzf)Wexp( (1)

where w(z,t) is the work performed on the trajectory
z(t) in phase space, and f(z,t) is the distribution func-
tion which evolves under the Liouville equation
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, with H  the Hamiltonian of the

system parameterized by . Liouville equation is highly
non-trivial and difficult to solve, but Jarzynski gave out
a solution[1] for the finite classical system when there is
no reservoir according to Liouville�s theorem[8],
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where f(z
0
,0) is the canonical distribution at initial con-

dition z
0
, which leads to JE. However, Liouville�s theo-

rem[8] only tells us that the phase space density is con-
served when we follow along the trajectories of the sys-
tem points, it never states that the density f(z,t) remain
unchanged when we stand still. The total derivative d/

dt in Liouville�s theorem ( 0/ dtdf ) is the convected

derivative, while the partial derivative t /  in Liouville
equation is the local derivative, the general solution of
Liouville equation can not be a constant distribution as
Eq.(2). Eq.(2) is only suitable for quasistatic equilib-
rium system, if the system changes rapidly, the above
distribution function become invalid because it should
vary with time, we cannot find a general solution for the
Liouville equation except in the linear region. On the
other hand, JE is only valid in finite classical system, it
fails in the nano-system system (i.e. cluster) because
the temperature cannot be well defined for the weight-

ing factor We   in nano-system[9], the distribution func-
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tion (2) can not be used to describe the nano-system.
In this manuscript, we try to extend JE to the rapid
varying nano-system.

If the external force applied to the system (what-
ever finite or small) is small, and the varying process
remain near equilibrium, the Liouville equation has the
following solution




t L)'tt(i 'dt)'t(F)}0,z(f,A{e)0,z(f)t,z(f (3)

where f(z,0) is the canonical distribution of initial con-
ditions, iL is the liouville operator, A being the dynami-
cal quantity conjugate to the force F(t),

0]/),([)(  FFFzHzA  with H(z,F) is the Hamil-

tonian of system applied by the force, then the average
 )Wexp(   becomes

'dt)'t(F)}0,z(f,A{e)]t,z(wexp[dz
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According to Kubo�s linear response theory,
 )Wexp(  can be rewritten as
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where <�>
0
 represents averaging over the initial equi-

librium state, and z
t-t�

 denotes the phase point moving
according to Hamiton�s equation of motion from z

t
 to

z
t-t�

. The above formula differs JE from the response

term  
 

t
0'tt )'t(F)z(wexp(A'dt  , which is appli-

cable to the study of system in the near equilibrium re-
gime. In the special case of external force F(t)=0, the
second term in Eq.(5) will vanish and our formula will
reduce to JE. Eq.(5) can also be tested by the experi-

ment stretching RNA molecule because RNA is in fact
a nano-system, it will help to understand the deviation
of Liphardt�s experiment with JE.

In conclusion, we generalize JE to the rapid chang-
ing nano-system and obtain a generalized formula which
has extra term than JE, that is induced by external force
in linear region, the formula can be further tested by the
experiment of stretching RNA molecule.
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