ISSN : 0974 - 7524

Physical CHEMISTRY An Indian Journal

- Full Paper

PCAIJ, 10(3), 2015 [080-084]

The enthalpies increments of the chemical elements for minerals of cancrinite group

Oleg Viacheslavovich Eremin

Laboratory of Geochemistry, Institute of Natural Resources, Ecology and Cryology the Siberian Branch of Russian Academy of SciencesPresent address: Chita, Nedorezovastreet 16a, Russian Federation, (RUSSIA) E-mail: yeroleg@yandex.ru

ABSTRACT

The chemical elements increments for experimental values of standard enthalpies $\Delta_r H^\circ$ for three cancrinite group minerals have been calculated by means of linear programming problems. The obtained increments have been used in calculations of $\Delta_r H^\circ$ values for nine minerals of cancrinite group with known thermodynamic properties. The mean error of calculations makes about 1 %. The estimations for some minerals with unknown enthalpies have been carried out.

© 2015 Trade Science Inc. - INDIA

INTRODUCTION

The minerals of cancrinite group represent a class of framework microporous aluminosilicates with confined water, alkaline and alkali-earth cations (basically Na and Ca) and anions - hydroxide, carbonate, oxalate, sulfate, phosphate, chloride^[8]. These minerals are widely widespread in alkaline complexes as rock-forming and postmagmatic minerals and frequent phases accompanying the red mud from aluminium production industry^[14].

Recently we have presented the some schemes of estimations the standard thermodynamic potentials for zeolites^[16, 17, 15] with the use of linear programming problems. The aim of presented study is the application of these methods for calculations of enthalpies of formations from the elements for cancrinite group minerals.

KEYWORDS

Cancrinite group minerals; Standard enthalpies offormation from the elements; Linear programming.

METHODS

The cancrinite - $Na_{6.93}Ca_{0.545}K_{0.01}$ [Si_{6.47}Al_{5.48}Fe_{0.05}O₂₄](CO₃)_{1.25}·2.3H₂O, cancrisilite - $Na_{7.17}Ca_{0.01}[Si_{7.26}A1_{4.70}Fe_{0.04}O_{24}](CO_3)_{1.05}$ (PO₄)_{0.04}(SO₄)_{0.01}(OH)_{0.21}·2.635H₂O and carbonate-oxalate cancrinite - $Na_{6.9}K_{0.1}Ca_{0.1}[A1_{5.4}Si_{6.6}O_{24}]$ (C₂O₄)_{0.4}(SO₄)_{0.1}·3.6H₂O from Khibino-Lovozero alkaline complex have been chosen as calibration minerals with the values of standard enthalpies Δ_{f} H^o =-14490.0±16.0, -14302.0±17.0 and -14473.0±21.0 kJ/molerespectively which experimentally determined in works^[9, 10].

For reactions of these minerals formation from oxides:

 $\begin{aligned} &3.465 \text{Na}_2\text{O} + 0.540 \text{CaO} + 0.005 \text{K}_2\text{O} + 0.025 \text{Fe}_2\text{O}_3 + \\ &2.740 \text{Al}_2\text{O}_3 + 6.470 \text{SiO}_2 + 2.300 \text{H}_2\text{O} + 1.250 \text{CO}_2 \\ &= \text{Na}_{6.93} \text{Ca}_{0.545} \text{K}_{0.01} [\text{Si}_{6.47} \text{Al}_{5.48} \text{Fe}_{0.05} \text{O}_{24}] (\text{CO}_3)_{1.25} \cdot 2.3 \text{H}_2\text{O} \\ &\text{(cancrinite)}, \end{aligned} \tag{1}$

we construct the linear programming problems:

$$\mathbf{x}^* = \min \Delta_{\mathbf{f}} \mathbf{H}^{\circ}(\mathbf{x}) \mathbf{x}, \mathbf{A} \mathbf{x} = \mathbf{b} = abs(null(\mathbf{A}))/2, \mathbf{x} \ge 0, \quad (4)$$

where A – the stoichiometric matrix on chemical elements of systems; b - the vector of the material balance which has been written as absolute value of null-space of matrix A; Δ_{f} H^o (x) – the standard enthalpies for components x of reactions (1-3), their values are taken from databases of a program complex "Selector"^[2] and works^[9, 10, 7] and are presented in TABLE 1.

The solutions of problem (4) with the data (TABLE 1) represents the $x^* = 1$ mole of reactions products (1-3) – the calibration minerals.

The direct problems (4) are conjugate to them

duals:

y*=maxby, A'y≤∆_fH°(x)

where ' - an index of transposing.

For nonsingular solutions x^* and y^* of problems (4) and (5) are fair equality:

$$\Delta_{\mathbf{f}}\mathbf{H}^{\mathbf{o}}(\mathbf{x}^{*})\mathbf{x}^{*}=\mathbf{b}\mathbf{y}^{*} \tag{6}$$

which for reactions (1-3) represents the linear decomposition of enthalpies values on molal increments of chemical elements.

We have applied the additive scheme for estimations of standard enthalpies $\Delta_{\rm f}$ H° (k) of cancrinite group minerals - k under the formula:

$$\Delta_{\mathbf{r}}\mathbf{H}^{o}(\mathbf{k}) = \mathbf{Y}(\mathbf{k}) \mathbf{y}^{*}$$
(7)

where Y (k) - stoichiometric formula of a mineral k, y^* - the dual solutions of problems (5) (Ta₆.2).

The errors of calculations on (7) were estimated by means of the formula:

$$\delta = 2abs(H_1 - H_2)/(H_1 + H_2)$$
(8)

where H_1 - the calculated values and H_2 - the published data (TABLE 3).

TABLE 1 : The values of standar	l enthalpies of formations from tl	he elements for components x of reactions ((1-3)
---------------------------------	------------------------------------	---	-------

Components, x	-Δ _f H°, J/mole
Na ₂ O	414220
CaO	635089
K_2O	361500
Fe_2O_3	824084
Al_2O_3	1675725
SiO_2	910735
H ₂ O (iceI)	292746
CO_2	393505
SO_3	395720
P_2O_5	1470050
O_2	0
$Na_{6.93}Ca_{0.545}K_{0.01}[Si_{6.47}Al_{5.48}Fe_{0.05}O_{24}](CO_3)_{1.25}\cdot 2.3H_2O$	14490000
$Na_{7.17}Ca_{0.01}Si_{7.26}[Al_{4.70}Fe_{0.04}O_{24}](CO_3)_{1.05}(PO_4)_{0.04}(SO_4)_{0.01}(OH)_{0.21}\cdot 2.635H_2O_{1.05}(PO_4)_{0.04}(SO_4)_{0.01}(OH)_{0.21}\cdot 2.635H_2O_{1.05}(PO_4)_{0.04}(SO_4)_{0.04}(SO_4)_{0.04}(OH)_{0.21}\cdot 2.635H_2O_{1.05}(PO_4)_{0.04}(SO_4)_{0.04}(SO_4)_{0.04}(OH)_{0.21}\cdot 2.635H_2O_{1.05}(PO_4)_{0.04}(SO_4)_{0.04}(SO_4)_{0.04}(OH)_{0.21}\cdot 2.635H_2O_{1.05}(PO_4)_{0.04}(SO_4)_{0.04}$	14302000
$Na_{6.9}K_{0.1}Ca_{0.1}[Al_{5.4}Si_{6.6}O_{24}](C_2O_4)_{0.4}(SO_4)_{0.1}\cdot 3.6H_2O$	14473000

TABLE 2 : The chemical elements increments y* (J/mole) for standard enthalpies of calibration minerals in reactions (1-3)

y_{El}^{*} for reactions (1-3)	Ca	Na	K	Al	Fe	Si	С	S	Р	0	Н
1	-358195	-23878	-107355	-248127	67009	-87954	257867	-	-	-419316	15986
2	-472003	-52433	-	-330482	-8362	-183620	169352	231039	34459	-370293	-6413
3	-853790	-236895	-333401	-875698	-	-941640	-536795	-827898	-	0	-175539

(5)

Full Paper

RESULTS AND DISCUSSION

To compare the dual solutions y^* (TABLE 2) them have been presented as the bar diagrams (Figure 1-3).

Let's notice that comparing of dual solutions among themselves it is necessary to consider that making calibration minerals chemical elements differ in total. Besides for reaction (3) in reagents set there is an oxygen (O_2) that leads to other dual solution that for reactions (1) and (2) which have some similarity. For reaction (3) significant difference of y* components follow from constraint conditions of a dual problem (5) namely $2y_0 \le 0$ (J/mole) whence follows $y_0^*=0$. For reaction (1) y_{Fe}^* , y_C^* and y_H^* have the positive values as y_P^* , y_S^* and y_C^* for reaction (2).

For some mineral of cancrinite group with unknown thermodynamics properties the values of standard enthalpies have been estimated by means of (7). The results of calculations are presented in TABLE 4. The discrepancy inestimationsup to 5% underthree dual solutions for some minerals (pitiglianoite, biachellaite)is caused by absence ofcertainchemical elements in y* but theirs presence in the substances stoichiometry.

TABLE 3 : Comparison of calculated and published data for the standard enthalpies (J/mole) of cancrinite minerals group, in brackets - errors (8) in percentage, the bold font – calibration minerals in reactions (1-3)

Minerals		$-\Delta_{\rm f} {\rm H}^{\rm o}$, calculated on (7) for reactions (1-3)			
	(bibli.)	1	2	3	
Cancrinite [Ogorodova et al., 2009]	14400000	14490000	14565220	14475776	
$Na_{6.93}Ca_{0.545}K_{0.01}[Si_{6.47}Al_{5.48}Fe_{0.05}O_{24}](CO_3)_{1.25}\cdot 2.3H_2O$	14490000	(0.00)	(0.52)	(0.10)	
Cancrisilite [Ogorodova et al., 2009]	14302000	14279734	14302000	14136536	
$Na_{7.17}Ca_{0.01}[Si_{7.26}Al_{4.70}Fe_{0.04}O_{24}](CO_3)_{1.05}(PO_4)_{0.04}(SO_4)_{0.01}(OH)_{0.21}\cdot 2.635H_2O$	14302000	(0.16)	(0.00)	(1.16)	
Carbonate-oxalate cancrinite [Olysuch et al., 2011]	14473000	14222056	14253766	14473000	
$Na_{6.9}K_{0.1}Ca_{0.1}[Al_{5.4}Si_{6.6}O_{24}](C_2O_4)_{0.4}(SO_4)_{0.1}\cdot 3.6H_2O$	14473000	(1.75)	(1.52)	(0.00)	
Cancrinite [Ogorodova et al., 2009]	15552000	15714581	15879562	15808728	
$Na_6Ca_2[Si_6Al_6O_{24}](CO_3)_2 \cdot 2H_2O$	15552000	(1.04)	(2.08)	(1.64)	
Cancrinite [Liu et al., 2007]	14524070	14484089	14528055	14404848	
$Na_{7.771}[Si_{6.004}Al_{5.956}O_{24}](CO_3)_{0.881} \cdot 3.48H_2O$	14524070	(0.28)	(0.03)	(0.82)	
Cancrinite [Ogorodova et al., 2009]	14601000	14686834	14827987	14797465	
$Na_6Ca_{1.5}[Si_6Al_6O_{24}](CO_3)_{1.5} \cdot 1.1H_2O$	14091000	(0.03)	(0.93)	(0.72)	
Cancrisilite[Kurdakova et al., 2014]	14694000	14804207	14850291	14733297	
$Na_{8.28}[Si_{6.07}Al_{5.93}O_{24}](CO_3)_{0.93}(OH)_{0.49} \cdot 3.64H_2O$	14084000	(0.82)	(1.13)	(0.34)	
Cancrisilite [Ogorodova et al., 2009]	1420000	14249157	14282719	14218269	
Na ₇ [Si ₇ Al ₅ O ₂₄]CO ₃ ·3H ₂ O	14208000	(0.13)	(0.10)	(0.35)	
Kyanoaxalite [Olysuch et al., 2011]	14555000	14764698	14825528	14854483	
$Na_{7}[Si_{6}Al_{6}O_{24}](C_{2}O_{4})_{0.5}$, $5H_{2}O$	14555000	(1.43)	(1.84)	(2.04)	
Mean error %		0.73	0.91	0.80	

TABLE 4 : The calculated on (7) standard enthalpies values (J/mole) for calibration minerals from reactions (1-3)

Minerals	-Δ _t H°, calculated on (7) for reactions (1-3)			
	1	2	3	
$Na_{4.7}K_{2.6}Ca_{0.1}[Si_{6.1}Al_{5.9}O_{24}](SO_4)_{0.8} \cdot 2H_2Opitiglianoite^{[1]}$	14607722	14016957	14340730	
$Na_5K_{1.5}Ca[Si_6Al_6O_{24}](SO_4)(OH)_{0.5} \cdot H_2Oalloriite^{[3]}$	14984964	14527436	14709145	
$[Si_{6.3}Al_{5.7}O_{24}][Na_{2}(H_{2}O)_{2}][Na_{5.7}(CO_{3})_{0.9}(SO_{4})_{0.1}(H_{2}O)_{0.6}] cancrinite^{[3]}$	14683836	14746586	14671610	
$[Si_{6.6}Al_{5.4}O_{24}][Na_{1.2}Ca_{0.4}(H_2O)_{1.6}][Na_6(CO_3)_{1.3}(H_2O)_{1.2}] cancrisilite^{[3]}$	14290774	14299837	14226615	
$Na_8[Al_6Si_6O_{24}](SO_4)$ ·2H ₂ Ovishnevite ^[8]	14723049	14407499	14329247	
$Na_{3.76}Ca_{2.50}K_{1.44}[Si_{6.06}Al_{5.94}O_{24}](SO_4)_{1.84}Cl_{0.15}(OH)_{0.43} \cdot 0.81H_2Obiachellaite^{[12]}$	16783670	16112563	16296474	
$Na_7Ca[Al_6Si_6O_{24}](CO_3)_{1.5} \cdot 2H_2Ocancrinite^{[18]}$	14880223	14989227	14923436	
$Na_{7.58}K_{0.12}[Si_{6.19}Al_{5.81}O_{24}](PO_4)_{0.47}(CO_3)_{0.22}(OH)_{0.02}(SO_4)_{0.01}\cdot 3.345H_2Odepmeierite^{[10]}$	14555579	14515052	14056475	

Physical CHEMISTRY Au Judian Journal

Figure 1 : The chemical elements increments of standard enthalpie value $\Delta_r H^\circ$ =-14490.0 kJ/mole of calibration $cancrinite\ mineral\ Na_{_{6,93}}Ca_{_{0.545}}K_{_{0.01}}[Si_{_{6,47}}Al_{_{5,48}}Fe_{_{0.05}}O_{_{24}}](CO_{_3})_{_{1.25}}\cdot 2.3H_{_2}O^{_{[9]}}$

Figure 2 : The chemical elements increments of standard enthalpie value $\Delta_r H^\circ$ =-14302.0 kJ/mole of calibration cancrisilite mineral Na_{7.17}Ca_{0.01}Si_{7.26}[Al_{4.70}Fe_{0.04}O₂₄](CO₃)_{1.05}(PO₄)_{0.04}(SO₄)_{0.01}(OH)_{0.21}·2.635H₂O^[9]

Figure 3 : The chemical elements increments of standard enthalpie value Δ_{r} H^o=-14473.0 kJ/mole of calibration carbonate-oxalate cancrinite mineral $Na_{69}K_{0,1}Ca_{0,1}[Al_{5,4}Si_{6,6}O_{24}](C_2O_4)_{0,4}(SO_4)_{0,1}\cdot 3.6H_2O^{[10]}$

mations in cases when the set of chemical element stance coincide or differ slightly.

Thus it is possible to expect more correct esti- structure of calibration minerals and estimated sub-

Full Paper

The received values of chemical elements increments can be used for estimations of standard enthalpies of cancrinite group substances with prospective accuracy about 1-3 %.

ACKNOWLEDGMENTS

The work was supported by RFBR and Zabaykalskiykray Government (project ¹ 14-05-98012).

REFERENCES

- [1] E.Bonaccorsi, G.D.Ventura, F.Bellatreccia, S.Merlino; The thermal behaviour and dehydration of pitiglianoite, A mineral of the cancrinite-group// Microporous and Mesoporous Materials, **99**, 225– 235 (**2007**).
- [2] K.V.Chudnenko; Thermodynamic modelling in geochemistry: theory, Algorithms, Software, Applications, Novosibirsk, GEO, [in Russian], 287 (2010).
- [3] N.V.Chukanov, R.K.Rastsvetaeva, I.V.Pekov, A.E.Zadov; Alloriite, $Na_5K_{1.5}Ca(Si_6Al_6O_{24})$ $(SO_4)(OH)_{0.5}H_2O$, a New Mineral Species of the Cancrinite Group//Geology of Ore Deposits, **49(8)**, 752–757 (**2007**).
- [4] O.V.Eremin; Estimation of the standard thermodynamic potentials of framework Ca-Aluminosilicates by Linear Programming//Geochemistry International, 52(9), 788–793 (2014).
- [5] S.V.Kurdakova, R.O.Grishchenko, A.I.Druzhinina, L.P.Ogorodova; Thermodynamic properties of synthetic calcium-free carbonate cancrinite//PhysChem Minerals, 41, 75–83 (2014).
- [6] Q.Liu, A.Navrotsky, C.F.Jove-Colon, F.Bonhomme; Energetics of cancrinite: Effect of salt inclusion// Microporous and Mesoporous Materials, 98, 227– 233 (2007).
- [7] L.Mercury, Vieillard Ph., Y.Tardy; Thermodynamics of ice polymorphs and «ice-like» water in hydrates and hydroxides//Appl. Geochem, 16, 161-181 (2001).
- [8] Minerals: V.5: Framework silicates. Is.2: Feldspathoids/Eds. G.B.Bokiy. M.: Nauka, 379 (2003).
- [9] L.P.Ogorodova, L.V.Mel'chakova, M.F.Vigasina, L.V.Olysich, I.V.Pekov; Cancrinite and cancrisilite in the Khibina–Lovozero alkaline complex: thermochemical and thermal data//Geochemistry Interna-

Physical CHEMISTRY An Indian Journal tional, 47(3), 260–267 (2009).

- [10] L.V.Olysych, M.F.Vigasina, L.V.Melchakova, L.P.Ogorodova, I.V.Pekov, N.V.Chukanov; Thermal evolution and thermochemistry of the cancrinite_group carbonate-oxalate mineral// Geochemistry International, 49(7), 731-737 (2011).
- [11] I.V.Pekov, L.V.Olysych, N.V.Zubkova, N.V.Chukanov, K.V.Van; PushcharovskyD.Yu. DepmeieriteNa₈[Al₆Si₆O₂₄] (PO₄,CO₃)_{1-x}·3H₂O (x < 0.5):A New Cancrinite_Group Mineral Species from the Lovozero Alkaline Pluton of the Kola Peninsula//Geology of Ore Deposits, **53**(7), 604–613 (2011).
- [12] R.K.Rastsvetaeva, N.V.Chukanov; Model of biachellaite crystal structure – the new 30-lays member of cancrinite group//Crystallography, [in Russian], 53(6), 1038-1045 (2008).
- [13] R.K.Rastsvetaeva, I.V.Pekov, N.V.Chukanov, K.A.Rozenberg, L.V.Olysych; Crystal Structures of Low-Symmetry Cancrinite and Cancrisilite Varieties//Crystallography Reports, 52(5), 811–818 (2007).
- [14] Shaotao Cao, Haijun Ma, Yi Zhang, XiaofanChenc, Yifei Zhang, Yi Zhang; The phase transition in Bayer redmudfrom China in high caustic sodium aluminate solutions//Hydrometallurgy, 140, 111–119 (2013).
- [15] O.V.Yeriomin, G.A.Yurgenson; Calculation of standard thermodynamic potentials of natural calcium zeolites//ZeitschriftfürGeologischeWissenschaften, 4/ 5, 245-251 (2012).
- [16] O.V.Yeriomin; Calculation of standard thermodynamic potentials for Na-zeolites with the use of linear programming problems//International Journal of Geosciences, **3**, 227-230 (**2011**).
- [17] O.V.Yeriomin; Evaluation of standard thermodynamic potentials for natural zeolites in unified stoichiometric formulas//Journal of Earth Science Research, 1, 3, 84-93 (2013).
- [18] N.V.Zubkova, N.V.Chukanov, I.V.Pekov; PushcharovskiiD.Yu..Low_HydrousCancrinite: Atomic Structure and Indicative Importance// Doklady Earth Sciences, 439(1), 998–1001 (2011).