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Introduction 

The effect of gravitational field on thermodynamic properties of simple solutions is often neglected due to the relatively small 

gravitational acceleration. However, these effects can be more significant when dealing with systems in stronger fields. For instance, in 

an ultracentrifuge, the artificial gravity generates a density gradient which is the basis for separation of biomolecules such as DNA 

molecules, proteins, etc. This density gradient is due to the particular distribution of solute particles in the gravitational field. We discuss 

this distribution in the next section. 

In some cases, even neglecting the minimal effects due to gravity can lead to a contradiction to laws of thermodynamics, specially the 

second law. Secrest [7] explained that how a non-rigorous treatment of these effects would wrongly predict the existence of "an osmotic 

perpetual motion machine". 

 

We consider the behavior of nonelectrolyte solute molecules in such a gravitational field. Then we'll derive the difference in 

thermodynamic properties that arises when the influence of gravity is taking to account. We make following assumptions in order to 

make calculations easier: 

The solvent is completely incompressible. Furthermore, dissolving more solute would not change the solution's volume. In a 

mathematical point of view, we say (
𝜕𝑉

𝜕𝑛𝑖
)𝑃,𝑇,𝑛𝑗≠𝑖

 

Our system (the solution) is in thermodynamic equilibrium. 
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Abstract 

It's customary in physical chemistry textbooks to neglect the effect of gravity on thermodynamic properties. But is it always an 
accurate procedure? in this paper we have tried to obtain gravitational corrections to internal energy, entropy, enthalpy, Gibbs free 
energy and molecular distribution for nonelectrolyte ideal-dilute solutions. We have shown these corrections to be approximately 

𝐸𝑐𝑜𝑟 ≈
𝑔2𝐷2

12𝑅𝑇
∑ 𝑛𝑖𝑀𝑖

2
𝑖 , 𝑆𝑐𝑜𝑟 ≈

𝑔2𝐷2

24𝑅𝑇2
∑ 𝑛𝑖𝑀𝑖

2
𝑖  (and similar equations for G and H). Finally, some rules are suggested for deciding 

whether it is necessary to consider the effect of gravity.  
Keywords: gravitational field, ideal-dilute solutions, equilibrium thermodynamics, chemical  
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the solution is assumed to be an "ideal-dilute" one; namely,' solute molecules interact essentially only with solvent molecules '. [4] 

As mentioned earlier, we only deal with solutions of nonelectrolytes. 

The gravitational field, temperature and density do not vary from point to point through the system. 

The geometrical shape of the container is a prism parallel to the direction of the field. D and A are the height of the prism and the area of 

the base, respectively. Therefore, its volume is V=AD 

The distribution of solute molecules 

Consider a specific solute species i present in the system. Invoking the chemical equilibrium condition, for any arbitrary transfer of this 

species between phases (different heights), we have 

𝑑𝑤𝑛𝑜𝑛−𝑝𝑣 =  ∑ 𝜇𝑖
𝛼

𝛼

𝑑𝑛𝑖
𝛼 

Where the sum goes over different phases (heights) and dwnon-pv is any work done except the expansion work (also known as 'PV 

work') in the process of transfer. In this case the wnon-pv is due to gravitational work. (Eq.1 can be easily obtained using the equations  

𝑑𝐸 = 𝑇𝑑𝑆 − ∑ 𝑃𝛼 𝑑𝑉𝛼𝛼 + ∑ 𝜇𝑖
𝛼

𝛼 𝑑𝑛𝑖
𝛼 And 𝑑𝐸 = 𝑑𝑞 + (𝑑𝑤𝑝𝑣 + 𝑑𝑤𝑛𝑜𝑛−𝑝𝑣) = 𝑇𝑑𝑆 − ∑ 𝑃𝛼 𝑑𝑉𝛼𝛼 + 𝑑𝑤𝑛𝑜𝑛−𝑝𝑣  

For two arbitrary heights (say hα and hβ; see Fig.1) this equation becomes 

𝑑𝑤𝑛𝑜𝑛−𝑝𝑣 =  𝜇𝑖
𝛼 (𝑑𝑛𝑖) + 𝜇𝑖

𝛽
 (−𝑑𝑛𝑖) 

= (𝜇𝑖
𝛼 − 𝜇𝑖

𝛽)𝑑𝑛𝑖   

Fig 1. Transfer of dni moles of substance i between two arbitrary heights 

                                                                   

Because gravitational force is conservative, we can write 

𝑑𝑤𝑔𝑟 =  −𝑑𝐸𝑝𝑔𝑟 =  −𝑔(ℎ𝛼 − ℎ𝛽)𝑑𝑚𝑖 = 𝑀𝑖𝑔(ℎ𝛽 − ℎ𝛼)𝑑𝑛𝑖 

Where Mi is the molar mass of i. Substituting this into Eq.2 and cancel the dni factor on both sides, we obtain 

𝑀𝑖𝑔(ℎ𝛽 − ℎ𝛼) =  (𝜇𝑖
𝛼 − 𝜇𝑖

𝛽) 

Since the solution is assumed to be ideal-dilute, chemical potential of i is obtained from 

𝜇𝑖 =  𝜇𝑖
0 + 𝑅𝑇 ln

𝑐𝑖

𝑐0

                      𝑐0 ≡ 1 𝑚𝑜𝑙 𝐿−1 

If we substitute Eq.5 into Eq.4, we obtain 

𝑀𝑖𝑔(ℎ𝛽 − ℎ𝛼) =  𝜇𝑖
0(𝑃𝛼 . 𝑇) − 𝜇𝑖

0(𝑃𝛽  . 𝑇) + 𝑅𝑇 ln
𝑐𝑖

𝛼

𝑐𝑖
𝛽

 

Now we show that μ_i^0 (P_α .T) and μ_i^0 (P_β .T) are equal. In other words, in this case,  μ_i^0 is independent of pressure 

𝜕𝜇𝑖

𝜕𝑃
=  

𝜕(
𝜕𝐺
𝜕𝑛𝑖

)

𝜕𝑃
=  

𝜕(
𝜕𝐺
𝜕𝑃)

𝜕𝑛𝑖

=  
𝜕𝑉

𝜕𝑛𝑖

 

And since it is assumed 
𝜕𝑉

𝜕𝑛𝑖
= 0 (assumption No.1), it leads to 

𝜕𝜇𝑖

𝜕𝑃
= 0 and so μ_i^0 (P_α .T) =μ_i^0 (P_β  .T). Therefore, we can cancel 

the first two terms on the right side of Eq.6 to get 

http://www.tsijournals.com/


www.tsijournals.com | August-2022 
 

Citation: Aryan T. The effect of gravitational field on thermodynamics of ideal-dilute solutions. Phys Chem Ind J. 

2022.17 (4).001. 

𝑀𝑖𝑔(ℎ𝛽 − ℎ𝛼) =  𝑅𝑇 ln
𝑐𝑖

𝛼

𝑐𝑖
𝛽

 

Note the similarity between Eq.9 and Boltzmann distribution law. We can interpret this result using a microscopic point of view. The 

energy of an individual molecule of i can be written as 

 ε= ε_tr+ ε_rot+ε_vib+ε_el+ε_int+ε_gr (10) 

 

Where the first four terms are translational, rotational, vibrational and electronic energies, respectively. ε_int is the energy due to 

interaction with solvent. The last term is the gravitational potential energy, which is equal to mgh. 

Since temperature is constant through the solution (assumption No.5), the first four terms do not vary from point to point. Furthermore, µ 

and –as a result- interaction with solvent do not depend on the pressure. So ε_int is also constant. So we have 

∆𝜀 =  ∆𝜀𝑔𝑟 = 𝑚𝑔∆ℎ 

And invoking Boltzmann distribution law for molecular energy distribution, we obtain 

𝑛𝑖
𝛽

𝑛𝑖
𝛼 =

𝑐𝑖
𝛽

𝑐𝑖
𝛼 = 𝑒

−𝑚𝑖𝑔(ℎ𝛽−ℎ𝛼)
𝑘𝐵𝑇 = 𝑒

−𝑀𝑖𝑔(ℎ𝛽−ℎ𝛼)
𝑅𝑇  

Which is consistent with Eq.9. we can rewrite this result in form of 

𝑐𝑖
𝛼 = 𝑎𝑒

−𝑀𝑖𝑔ℎ𝛼

𝑅𝑇  

Where a is a constant that should be determined using the normalization condition 

𝑛𝑖,𝑡𝑜𝑡 = ∫ 𝑐𝑖
𝛼 𝑑𝑉𝛼 = ∫ (𝑎𝑒

−𝑀𝑖𝑔ℎ
𝑅𝑇 )(𝐴𝑑ℎ) 

ℎ=𝐷

ℎ=0

 

𝑛𝑖,𝑡𝑜𝑡 = 𝐴𝑎 (
−𝑅𝑇

𝑀𝑖𝑔
) (𝑒

−𝑀𝑖𝑔𝐷
𝑅𝑇 − 1) 

= 𝐴𝐷𝑎 (
−𝑅𝑇

𝑀𝑖𝑔𝐷
) (𝑒

−𝑀𝑖𝑔𝐷
𝑅𝑇 − 1) 

We now define Xi by𝑋𝑖 ≡
−𝑀𝑖𝑔𝐷

𝑅𝑇
. Using this definition and V=AD, we find 

𝑛𝑖,𝑡𝑜𝑡 =
𝑎𝑉

𝑋𝑖

(𝑒𝑋𝑖 − 1) 

Substituting a from Eq.16 into Eq.13, we get 

𝑐𝑖
𝛼 = 𝑎𝑒

−𝑀𝑖𝑔ℎ𝛼

𝑅𝑇 = [
𝑛𝑖,𝑡𝑜𝑡

𝑉
(

𝑋𝑖

𝑒𝑋𝑖 − 1
)] 𝑒

−𝑀𝑖𝑔ℎ𝛼

𝑅𝑇  

Finally, we have derived the distribution of solute molecules which plays a key role in deriving other properties of the system. 

The change in internal energy (E) 

In this section, we find the energy difference between these two cases; one in which a gravitational field is present and a solution with no 

external fields acting on it. We call these cases 'simplified' and 'real' cases, respectively. This difference arises because of the work of 

gravitational field in the process of moving from the 'simplified' to the 'real' case. 

∆𝐸 = 𝐸𝑟𝑒𝑎𝑙 − 𝐸𝑠𝑖𝑚𝑝 = 𝑤𝑔𝑟,𝑠𝑖𝑚𝑝→𝑟𝑒𝑎𝑙 =  −∆𝐸𝑝𝑔𝑟 = −(𝐸𝑝𝑟𝑒𝑎𝑙 − 𝐸𝑝𝑠𝑖𝑚𝑝) 

𝐸𝑝𝑟𝑒𝑎𝑙 = ∫ 𝑔ℎ𝛼𝑑𝑚𝑖
𝛼 = ∫ 𝑔ℎ𝛼𝑀𝑖𝑑𝑛𝑖

𝛼 = ∫ (𝑔ℎ𝑀𝑖𝑐𝑖)(𝐴𝑑ℎ) 
ℎ=𝐷

ℎ=0

 

When we substitute Eq.17 into the last equation, we obtain 

𝐸𝑝𝑟𝑒𝑎𝑙 = 𝑀𝑖𝑔𝐴𝑎 ∫ ℎ𝑒
−𝑀𝑖𝑔ℎ

𝑅𝑇 𝑑ℎ
ℎ=𝐷

ℎ=0
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= 𝑀𝑖𝑔𝐴𝑎 (
𝑅𝑇

𝑀𝑖𝑔
)

2

[𝑒𝑋𝑖(𝑋𝑖 − 1) + 1] 

𝐸𝑝𝑟𝑒𝑎𝑙 = 𝑛𝑖,𝑡𝑜𝑡𝑅𝑇 [1 −
𝑋𝑖𝑒

𝑋𝑖

𝑒𝑋𝑖 − 1
] 

On the other hand, when the distribution of particles through the solution is even (and it's not affected by the gravity yet), we have 𝑐𝑖
𝛼 =

𝑛𝑖,𝑡𝑜𝑡

𝑉
=

𝑛𝑖,𝑡𝑜𝑡

𝐴𝐷
 (for all heights) and therefore 

𝐸𝑝𝑟𝑒𝑎𝑙 = ∫ (𝑔ℎ𝑀𝑖𝑐𝑖)(𝐴𝑑ℎ) 
ℎ=𝐷

ℎ=0

=
𝑛𝑖,𝑡𝑜𝑡𝑀𝑖𝑔𝐷

2
=  𝑛𝑖,𝑡𝑜𝑡𝑅𝑇(−𝑋𝑖/2) 

Eventually, we substitute Eq.21 and Eq.22 into Eq.18 to obtain 

∆𝐸 = 𝑛𝑖,𝑡𝑜𝑡𝑅𝑇 [
𝑋𝑖𝑒

𝑋𝑖

𝑒𝑋𝑖 − 1
−

𝑋𝑖

2
− 1] 

If we had several species instead of one, we could just add individual terms to obtain the desired result. So general form of ∆E for several 

species becomes 

∆𝐸 = ∑ 𝑛𝑖,𝑡𝑜𝑡𝑅𝑇 [
𝑋𝑖𝑒

𝑋𝑖

𝑒𝑋𝑖 − 1
−

𝑋𝑖

2
− 1]

𝑖

 

The change in entropy 

We shall start with the equation below 

𝑑𝐸 = 𝑇𝑑𝑆 − ∑ 𝑃𝛼 𝑑𝑉𝛼

𝛼

+ ∑ 𝜇𝑖
𝛼

𝛼

𝑑𝑛𝑖
𝛼 

Since the solution is incompressible the second term vanishes. Also for similar reasons we obtained Eq.9 from Eq.4, we could simplify 

μ_i= μ_i^0+RT ln 𝑅𝑇 ln
𝑐𝑖

𝑐0
to RT ln. We should integrate Eq.25 from simplified case to the real one. So 

∆𝐸 = 𝑇∆𝑆 + ∫ ∑ 𝑅𝑇 ln
𝑐𝑖

𝛼

𝑐0
𝛼

𝑑𝑛𝑖
𝛼

𝑐𝑎𝑠𝑒2

𝑐𝑎𝑠𝑒1

= 𝑇∆𝑆 + ∫ ∑ 𝑅𝑇𝑉𝛼 ln
𝑐𝑖

𝛼

𝑐0
𝛼

𝑑𝑐𝑖
𝛼

𝑐𝑎𝑠𝑒2

𝑐𝑎𝑠𝑒1

= 𝑇∆𝑆 + ∑ 𝑅𝑇𝑉𝛼 ∫ ln
𝑐𝑖

𝛼

𝑐0

𝑑𝑐𝑖
𝛼

𝑐𝑖
𝛼= 𝑐𝑖

𝛼

𝑐𝑖
𝛼=𝑛𝑖,𝑡𝑜𝑡/𝑉 𝛼

 

∆𝐸 = 𝑇∆𝑆 + 𝑅𝑇 ∑ 𝑉𝛼  [
𝑐𝑖

𝛼

𝑐0

(ln (
𝑐𝑖

𝛼

𝑐0

) − 1) −
𝑛𝑖,𝑡𝑜𝑡

𝑉
ln (

𝑛𝑖,𝑡𝑜𝑡

𝑉
− 1)]

𝛼

 

This sum goes over all heights; therefore, it's actually an integral. Substituting Vα = Adh and Eq.17 into Eq.27, we find 

∆𝐸 = 𝑇∆𝑆 + 𝑅𝑇𝐴 ∫ 𝑑ℎ [
𝑎𝑒

−𝑀𝑖𝑔ℎ𝛼

𝑅𝑇

𝑐0

(ln (
𝑎𝑒

−𝑀𝑖𝑔ℎ𝛼

𝑅𝑇

𝑐0

) − 1) −
𝑛𝑖,𝑡𝑜𝑡

𝑉
ln (

𝑛𝑖,𝑡𝑜𝑡

𝑉
− 1)]

ℎ=𝐷

ℎ=0

 

Using a number of standard integrals, the final result of this scary integral leads to 

∆𝐸 = 𝑇∆𝑆 + 𝑛𝑖,𝑡𝑜𝑡𝑅𝑇 [
𝑋𝑖𝑒

𝑋𝑖

𝑒𝑋𝑖 − 1
− ln (

𝑒𝑋𝑖 − 1

𝑋𝑖

) − 1] 

If we substitute Eq.23 into this equation, we finally get 

∆𝑆 = 𝑆𝑟𝑒𝑎𝑙 − 𝑆𝑠𝑖𝑚𝑝 =  𝑛𝑖,𝑡𝑜𝑡𝑅 [ln (
𝑒𝑋𝑖 − 1

𝑋𝑖

) −
𝑋𝑖

2
] 

And similar to ∆E, we can generalize this result to several species 

∆𝑆 = ∑ 𝑛𝑖,𝑡𝑜𝑡𝑅 [ln (
𝑒𝑋𝑖 − 1

𝑋𝑖

) −
𝑋𝑖

2
]

𝑖

 

The change in enthalpy and Gibbs free energy 

This time, we start with definition of enthalpy (H=E + PV). So 
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∆𝐻 = ∆𝐸 +  ∫ ∑ 𝑑𝑃𝛼𝑉𝛼 =
𝛼

𝑐𝑎𝑠𝑒2

𝑐𝑎𝑠𝑒1

∆𝐸 +  ∫ ∑ 𝑉𝛼𝑑𝑃𝛼

𝛼

𝑐𝑎𝑠𝑒2

𝑐𝑎𝑠𝑒1

= ∆𝐸 +  ∑ 𝑉𝛼

𝛼

∫ 𝑑𝑃𝛼

𝑐𝑎𝑠𝑒2

𝑐𝑎𝑠𝑒1

 

∫ 𝑑𝑃𝛼
𝑐𝑎𝑠𝑒2

𝑐𝑎𝑠𝑒1
For each phase (height) could be estimated by famous equation ∆P=ρgh (we've already assumed that ρ is constant through the 

system; so we can use this equation). Therefore 

∆𝐻 = ∆𝐸 + 𝜌𝑔 ∑ 𝐴ℎ𝛼𝑑ℎ𝛼

𝛼

= ∆𝐸 + 𝜌𝑔 ∫ 𝐴ℎ 𝑑ℎ
ℎ=𝐷

ℎ=0

 

∆𝐻 = ∆𝐸 + 𝜌𝑔𝑉𝐷/2 = ∑ 𝑛𝑖,𝑡𝑜𝑡𝑅𝑇 [
𝑋𝑖𝑒

𝑋𝑖

𝑒𝑋𝑖 − 1
−

𝑋𝑖

2
− 1]

𝑖

+ 𝜌𝑔𝑉𝐷/2 

Finally, ∆G is the easiest part 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 = ∑ 𝑛𝑖,𝑡𝑜𝑡𝑅𝑇 [
𝑋𝑖𝑒

𝑋𝑖

𝑒𝑋𝑖 − 1
− ln (

𝑒𝑋𝑖 − 1

𝑋𝑖

) − 1]

𝑖

+ 𝜌𝑔𝑉𝐷/2  

Limiting equations 

 

Usually X is so small (as we see in next section) that we can neglect second terms and higher in the Taylor expansion of equations for E, 

S, H and G. If we do so (we can handle this expansion using a computational program or website as Wolfram Alpha) we get 

 

∆𝐸 ≈  ∑
𝑛𝑖,𝑡𝑜𝑡𝑅𝑇

12
(𝑋𝑖)

2

𝑖

=
𝑔2𝐷2

12𝑅𝑇
∑ 𝑛𝑖,𝑡𝑜𝑡𝑀𝑖

2

𝑖

 

∆𝐸 ≈  ∑
𝑛𝑖,𝑡𝑜𝑡𝑅𝑇

12
(𝑋𝑖)

2

𝑖

=
𝑔2𝐷2

12𝑅𝑇
∑ 𝑛𝑖,𝑡𝑜𝑡𝑀𝑖

2

𝑖

 

∆𝐸 ≈  ∑
𝑛𝑖,𝑡𝑜𝑡𝑅𝑇

12
(𝑋𝑖)

2

𝑖

=
𝑔2𝐷2

12𝑅𝑇
∑ 𝑛𝑖,𝑡𝑜𝑡𝑀𝑖

2

𝑖

9 

∆𝐸 ≈  ∑
𝑛𝑖,𝑡𝑜𝑡𝑅𝑇

12
(𝑋𝑖)

2

𝑖

=
𝑔2𝐷2

12𝑅𝑇
∑ 𝑛𝑖,𝑡𝑜𝑡𝑀𝑖

2

𝑖

 

 

Numerical case 

Now, we evaluate equations of last section in a real situation. Consider 1L of saturated aqueous solution of sucrose in 250C. This solution 

approximately contains 6.05 mole of sucrose. Molar mass of sucrose equals to 342.3 g mol-1 and density of solution is 1.33 g cm-3 [1]. If 

we let height of container (D) be 20cm, then we find 

𝑋 =
−𝑀𝑔𝐷

𝑅𝑇
= −2.7 × 10−4 

Substituting X into four limiting equations, we have 

∆𝐸 ≈ 9.0 × 10−5 𝐽 , ∆𝑆 ≈ 1.5 × 10−7 𝐽𝑘−1 

∆𝐻 ≈ 1.3 𝐽 , ∆𝐺 ≈ 1.3 𝐽 

It turns out that corrections to G and H are more significant compared to E and S. But why is this so? This happened as a result of the 

contribution of the 'PV' term in H and G. (please note that H=E+PV and G=E-TS+PV). Nevertheless, these corrections are still so small 

that can be neglected in many thermodynamic studies. However, based on four limiting equations, we can see these deviations could be 

more important in some cases, such as 

When temperature is too low (because T appears in the dominator of correction terms). Unfortunately, as temperature goes to zero, 

quantum mechanical effects become more important and so our treatment loses its accuracy (for instance, see [5] for a treatment of low-

temperature thermodynamic system ). Our procedure can just predict that the deviations would be significant as T goes to zero, however, 
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we cannot compute theses deviations with the desired accuracy. 

When molar masses of particles are so high. (for example Nanoparticle colloids or biomolecules solutions) 

When gravitational field is so strong. (for instance, an ultracentrifuge may generate a gravitational field of 1000000g) 

When the system is so lengthy in the direction parallel to the field. (That is, D is high, for Example Ocean and lakes) 

When solution's density is high. (especially in case of Gibbs free energy and enthalpy; this is because of the contribution of the term 

𝜌𝑔𝑉𝐷

2
to equations 38 and 39) 

Otherwise, we may neglect minor gravity effects, safely. 

 

 

 

CONCLUSION 

We have derived equations for calculating gravitational corrections to thermodynamic properties in ideal-dilute solutions. These 

equations can be used for a more rigorous treatment of ideal-dilute solutions, but for most of purposes, they found to be negligible in 

normal conditions as already expected. Then we have shown briefly when it's safe to neglect gravity effects and in which cases it's better 

to use caution in dealing with these deviations. After all, please note that we have assumed that the solution is completely incompressible; 

If compressibility of fluids is taken to account, the effect of gravity is much more significant than what we estimated. 
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