

December 2007

CHEMICAL TECHNOLOGY

Trade Science Inc.

An Indian Journal

EXAMPLE 7 CTALJ 2(3) 2007 [107-113]

The development of technological method of manufactoring of O,O-dialkyl esters of long-chain alkylphosphonic acids on the basis of industrial fractions of higher monoolefins

Ilyas S.Nizamov^{1*,} Yevgeniy S.Yermolaev², Ilnar D.Nizamov¹, Gulnur G.Sergeenko², Elvira S.Batyeva¹, Vladimir A. Alfonsov¹ ¹A.E.Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, (RUSSIA) ²Tatar State Humanitarian Pedagogical University, Tatarstan Str. 2, 420021 Kazan, (RUSSIA) Fax : +7(843) 2732253 E-mail : nizamov@ksu.ru Received: 6th October, 2007 ; Accepted: 11th October, 2007

ABSTRACT

The reactions of higher monoolefins of industrial fractions of C_{16} - C_{18} and C_{20} - C_{26} with O,O-dialkyl phosphites in the presence of benzoyl peroxide were studied. On the basis of these studies, the technological method of synthesizing o,o-dialkyl esters of mixed long-chain alkylphosphonic acids was developed. © 2007 Trade Science Inc. - INDIA

Higher industrial olefins; Phosphonation; O,O-dialkyl phosphates; Long-chain alkylphosphonates.

KEYWORDS

INTRODUCTION

Numerous derivatives of phosphonic acids are known to have a considerable commercial value as well as a great variety of useful application. Organic phosphonic acids as well as their esters and salts have found an expanding application as plasticizers for many plastics and resins, oil lubricant additives, corrosion inhibitors, surface-active agents, emollients, washing agents, wetting agents and detergents, dispersing agents, flame proofing agents, bonding agents for asphalt, general agricultural and household chemicals including pesticides etc^[1-12]. Homolytical phosphorylation of non-activated individual lower aliphatic olefins by acidic phosphites are usually broadly used for preparing of organophosphorus compounds containing the P-C bond formed in accordance with anti-Markovnikow's rule^[1-10]. O,O-Dialkyl esters of long-chain alkylphosphonic acids were previously synthesized by radical addition of O,O-dialkyl phosphites onto individual higher α -olefins of C_{12} - C_{22} in the presence of di(t-butyl)peroxide ^[11,12]. Non-terminally substituted O,O-dimethyl alkylphosphonates have been prepared by the reaction of individual internally unsaturated hydrocarbons of C_{12} - C_{22} with O,O-dimethyl phosphite in the presence of organic peroxides^[13]. However, the chemical behavior of O,O-dialkyl phosphites remained unstudied toward the complicated mixtures of various structure olefins of industrial fractions of C_{16} - C_{18} and C_{20} - C_{26} . Consequently, in this article, an efficient method is presented for the synthesis of O,O-dialkyl esters of mixed long-chain alkylphosphonic acids directly from higher industrial olefins.

EXPERIMENTAL

The ³¹P NMR spectra were recorded with a Bruker

Full Paper

CXP-100(36.47MHz) instrument. The ¹H NMR spectra were taken on a Bruker MSL-400(400MHz) spectrometer and an Avance-600(600MHz) spectrometer in CDCl₃. The ¹³C NMR spectra were run on an Avance-600(100.6MHz) spectrometer in CDCl₃. The IR spectra were obtained with a Bruker Vector 22 infrared spectrometer. Mass spectra were determined on a Turbomass Gold Perkin Elmer chromatomass spectrometer, Finnigan MAT-212 spectrometer(60eV), TRACE MS Finnigan MAT(70eV) and laser mass spectrometer Dynamo Finnigan(method MALDI TOF with precession values of mass peaks). GC analyses were performed on a Turbomass Gold Perkin Elmer chromatomass spectrometer chromatomass spectrometer.

Olefins of industrial fractions of C_{16} - C_{18} (TU 2411-067-05766801-97) and C_{20} - C_{26} (TU 2411-068-05766801-97) were obtained from Join Stock Company "Nizhnekamskneftekhim"(Russia) and dried with CaCl₂. O,O-Dimethyl phosphite(TU 2435-430-057663441-2004) was purchased from join stock company "Khimprom"(Novocheboksarsk, Russia) and used without further purification. O,O-Di-*iso*-propyl phosphite was prepared according to literature^[14]. Commercial available benzoyl peroxide was used without purification.

Reaction of olefins of fraction of C_{16} - C_{18} (1a-c) with O,O-dimethyl phosphite (3a) in molar ratio 1:1. typical procedure

The mixture of (1a-c)(15.0g, 62.9mmol), 3a(6.5g, 59.1 mmol) and 4(0.4g, 0.8mmol) was stirred at 135-140°C for 3h. The mixture was diluted with 10mL of Et₂O and washed by third portions of 25mL of water. Organic layer was separated and dried with CaCl₂ for ~12 h. The mixture was filtered. The filtrate was evaporated at reduced pressure(0.5mm Hg) at 40°C for 1 h and at 0.06 mm Hg at 40°C for 1 h to give 16.4 g(81%) of crude (5a-d). Pure (5a-d)(13.8g, 67%) was isolated from the residue by means of a falling-film distillation at 100-110°C(0.02 mm Hg) and then distilled in vacuum with bp 110-115°C(0.05 mm Hg)(See TABLES 3-8).

Crude products(**5a-d**) were also obtained similarly by the reaction of(**1a-c**) with (**3a**) in molar ratio 1:2 in the presence of benzoyl peroxide (**4**)(See TABLE 3) with the use of benzene(70mL) instead of Et_2O . Products (**6a-d**) were obtained similarly(See TABLES 3-7), however, without water washing.

Products (7a-d) and (8a-d) were obtained similarly (See TABLES 3-8) with water washing, however, without use of a solvent. Crude (8a-d) were chromato graphed on a silica gel column with ethyl acetate as eluent to yield pure (8a-d).

RESULTS AND DISCUSSION

Taking into account the rather complicacy of content of industrial fractions of higher olefins, we have initially studied the content and structure of industrial fractions of C_{16} - C_{18} and C_{20} - C_{26} used in this work by ¹H NMR and mass spectral methods and GC analyses. Thus, the ¹H NMR spectrum of olefins of industrial fraction of C_{16} - C_{18} (**1a-c**) in CDCl₃ solution shows four groups of signals of vinyl protons of three specimens of olefins. A singlet at δ 4.76ppm attributed to two vinyl protons $H_2C=C(CH_2)R$ at C-1 atom of 2-methyl substituted α -olefins (1a). t-Vinyl proton at C-1 atom H(H)C=C(H)R of non-branched α -olefins (1b) gives a doublet at δ 4.98ppm(³J_{HH}10.2Hz), whereas a doublet at δ 5.05ppm is due c-vinyl proton H(H)C=C(H)R of $(\mathbf{1b})({}^{3}J_{HH} \mathbf{16.9Hz})$. At δ 5.87ppm is situated a multiplet of the vinyl proton at C-2 atom of the C=C bond of linear α -olefins (1b). Two vinyl protons at both C-1 and C-2 atoms of C=C bond of olefins (1c) containing the inner C=C bond appear as a small intensity characteristic multiplet at δ 5.47ppm. On the intensities of vinyl protons it was established that industrial fraction of C_{16} - C_{18} includes isomeric α -olefins (1a) 25.6%, linear α -olefins (1b)-61.6% and inner unsaturated hydrocarbons (1c)-12.8%. Thus, on the basis of ¹H NMR spectral data, the general content of α -olefins of C_{16} and C_{18} in the fraction of C_{16} - C_{18} is 87.2% including 1-alkenes of linear and branched structure.

$$\begin{array}{c} CH_{3} \\ CH_{3}^{-}(CH_{2})_{n} - C = CH_{2} \\ n = 12,14 \\ (1a) \\ CH_{3}(CH_{2})_{k}CH = CH(CH_{2})_{m}CH_{3} \\ (C_{16},C_{18}) \\ (1c) \\ \end{array}$$

	D	ŀ	5@]]	Pa	PB	P
•		0.11	•			~	

Number of peaks	The GC bush	Retention time, min	The content, %	The appertaining
1	C ₁₆	9.67	4.2	7-Methylenepentadecane
2	C ₁₆	9.75	3.7	2-Methyl-1-pentadecene
3	C	10.03	88	Methyl substituted 1-
5	C_{16}	10.05	0.0	pentadecene
4	C ₁₆	10.16	32.3	1-Hexadecene
5	C ₁₆	10.27	5.8	7-Hexadecene
6	C ₁₆	10.40	2.8	3-Hexadecene
7	C ₁₈	12.01	7.1	Methyl substituted 1-
8	C ₁₈	12.11	3.9	2-Methyl-1-heptadecene
9	Cua	12 35	94	Methyl substituted 1-
,	C18	12.35	7.4	heptadecene(isomer)
10	C ₁₈	12.44	14.7	1-Octadecene
11	C ₁₈	12.55	5.2	5-Octadecene
12	C_{18}	12.68	2.1	9-Octadecene
	In all		100.0	

TABLE 1 : The content of olefins of the fraction of C_{16} - C_{18} on the basis of GC and chromatomass spectra

TABLE 2 : The content of olefins of the fraction of C_2	$-C_{26}$	on
the basis of GC and chromatomass spectra		

12	C ₁₈ In all	12.68	2.1 100.0	9-Octadecene
Weh	nave four	nd that ol	lefins of	industrial fractions of
$C_{16} - C_{18} a$	and C_{20} -(C ₂₆ invol	lve in ex	clusively even num-
ber of ca	arbon ² at	oms. G	C-chron	natomass spectra of
olefins of	f fractior	$n \text{ of } C_{16}$ -C	C_{18} revea	al two bushes of peaks
with rete	ention ti	mes of 9	9.67-10	.40 and 12.01-12.68
min belo	ng to un	saturated	d hydrod	carbons of C_{16} and C_{18}
respectiv	ely(TAF	BLE 1). [The app	ertaining of GC peaks
obtained	l was car	ried out	on the b	basis of Perkin Elmer
electroni	ic chrom	natogran	n and m	ass spectral library. It
was estal	blished t	hat gene	ral conte	ent of α -olefins of C_{16}
is 44.8%	involvi	ng 32.3	% of 1-l	hexadecene, 3.7% of
2-methy	1-1-pent	tadecene	e and 8.	8% of methyl substi-
tuted 1-p	entadece	ene(no si	te of situ	ation of methyl group
determin	ed). Fou	ır peaks o	of α -ole	fins were found in the
bush of (C_{18} that c	correspo	nds to 3	5.1% with respect to
general c	content of	of α -olef	ïns.α-C	Defins of C_{18} involve
14.7% o	of 1-octa	idecene	and 20	.4% of three methyl
substitut	ted 1-he	eptadece	enes inc	cluding 2-methyl-1-
heptadec	ene. Th	us, the g	eneral c	ontent of α -olefins of
C_{16} and C_{16}	C_{18} in the	e fraction	$1 \text{ of } \mathcal{C}_{16}^{-1}$	C_{18} is 79.9%. Taking
into acco	ount 4.2	2% of 7-	methyl	enepentadecane, the
general o	content of	of α -olef	fin is inc	creased to 84.1%. On
the other	hand, 3	- and 7-l	nexadec	tenes as olefins of C_{16}
with the	inner C=	=C bond	are inclu	uded in the fraction of
$C_{16} - C_{18} i$	n the ov	verall qu	antity o	of 8.6%, whereas the
mutual c	ontent o	f 5- and	9-octade	ecenes as inner unsat-
urated h	ydrocar	bons of	C_{18} is n	o more 7.3%. Thus,
the gene	ral cont	ent of ol	efins of	C_{16} and C_{18} with the
inner C=	C bond	in the fr	action (C_{16} - C_{18} is 15.9%.

The content, mass distribution and appertaining of

	The	Datan	The	Found	
Number	Ine	Reten-	Ine	MS	
of peaks	GC	tion time,	content	' peaks	The appertaining
-	busn	min	%	m/z	
1	C ₂₀	14.06	5.5	280	2-Methyl-7-nonadecene
2	C	14.10	1.0	200	2-Methyl-7-
2	C_{20}	14.10	4.0	280	nonadecene(isomer)
3	C ₂₀	14.18	3.0	280	2-Methyl-1-nonadecene
4	C	1 / / 1	7.2	200	3,7,11,15-Tetramethyl-
4	C_{20}	14.41	1.2	280	2- hexadecene
5	C_{20}	14.47	6.3	280	1-Eicosene
6	C_{20}	14.51	1.5	280	Unidentified
7	C_{20}	14.56	2.6	280	5-Eicosene
8	C ₂₀	14.70	1.6	280	9-Eicosene
9	C ₂₂	15.95	8.3	308	2-Methyl-1-uncosene
10	C ₂₂	15.99	3.8	308	2-Methyl-7-uncosene
	~			• • • •	2-Methyl-7-
11	C_{22}	16.07	2.2	308	uncosene(isomer)
12	C22	16.28	5.5	308	9-Methyl-1-uncosene
13	C22	16.33	37	308	1-Docosene
14		16.33	1.6	308	5-Docosene
15		16.55	0.0	308	9-Docosene
15	C ₂₂	17.69	6.6	226	2 Mathul 1 triagana
10	C ₂₄	17.00	0.0	220	2-Internityi-1-uricosenie
17	C ₂₄	17.75	2.5	330	2-Methyl-/-tricosene
18	C ₂₄	17.80	1.1	336	2-Methyl-1-
					tricosene(isomer)
19	C ₂₄	17.99	3.1	336	Methyl substituted 1-
20	C	18.02	17	226	1 Tetracosene
20	C_{24}	10.05	1.7	226	5 Tetracosene
21	C ₂₄	10.10	0.8	220	5-Tetracosene
22	C ₂₄	18.25	0.6	330	9-Tetracosene
23	C_{26}	19.27	9.3	364	2-Methyl-1-pentacosene
24	C_{26}	19.33	1.2	364	2-Methyl-/-pentacosene
25	C ₂₆	19.40	0.6	364	10-Methyl-2-
26	C	10.50	1.0	264	pentacosene
26	C_{26}	19.58	1.2	364	9-Methyl-1-pentacosene
27	C ₂₆	19.61	0.6	364	9-Metnyl-1-
					pentacosene(isomer)
28	C_{28}	20.75	6.6	392	Methyl substituted
20	C	20.90	0.2	202	heptacosene
29	C_{28}	20.89	0.5	392	
30	C_{28}	20.95	0.4	392	Unidentified
31	C_{28}	21.05	0.5	392	Unidentified
32	C ₃₀	22.14	3.3	420	A triacontene
33	C_{32}	23.43	1.3	448	A dotriacontene
34	C ₃₄	24.65	0.6	476	A tetratriacontene
	In all		100.0		

olefins involved in the fraction of C_{20} - C_{26} (**2a-c**) is summarized in TABLE 2. It should be emphasized that the fraction trade marked as C_{20} - C_{26} mostly consists from the olefins of C_{20} (the overall consist of C_{20} is 31.7%), C_{22} (26.0%), C_{24} (16.4%) and C_{26} (12.9%) involving C_{28} (7.8%), with more than half of unsaturated hydrocarbons(57.7%) being the olefins of C_{20} and C_{22} in summa. On the basis of GC, 8 peak bushes were found

 \mathbf{D}

Full Paper

in the fraction of C_{20} - C_{26} . In the fraction of C_{20} - C_{26} the most of a-olefins were established to be 2-methyl substituted branched 1-alkenes such as 2-methyl-1nonadecene, -uncosene, -tricosene and pentacosene(in general of \sim 35%). Such α -olefins of linear structure as 1-eicosene, 1-docosene and 1-tetracosene are situated in general quantity of 11.7% in the fraction of C_{20} - C_{26} . The general content of inner unsaturated hydrocarbons of branched(mostly methyl substituted) and linear structure(such as 2-methyl-7-nonadecene, 2-methyl-7-uncosene, 2-methyl-7-tricosene, 2-methyl-7-pentacosene, 5- and 9-eicosenes, 5- and 9-docosenes and 5- and 9-tetracosenes) reaches to ~28%. Thus, industrial fractions of olefins of C_{16} - C_{18} and C_{20} - C_{26} mostly involve in 2-methyl substituted α -olefins (1a) and (2a) and linear α -olefins(1b) and (2b). Minor amounts of spatially hindered olefins with inner C=C bond (1c) and (2c) seem to possess low reactivity with respect to O,Odialkyl phosphites.

It should be expected that complicacy of content of industrial fractions of olefins of C_{16} - C_{18} and C_{20} - C_{26} can lead to intricate mixture of the addition products of

O,O-dialkyl phosphites into the C=C bond. We were deciding for use effectively method of promoting of addition reaction of O,O-dialkyl phosphites with non-activating olefins by involving benzoyl peroxide. Indeed, the reaction of olefins of industrial fractions of C_{16} - C_{18} (**1a-c**) and C_{20} - C_{26} (**2a-c**)with O,O-dialkyl phosphites (**3a,b**) in molar ratio 1:1 in the presence of benzoyl peroxide (**4**) has been shown to bring about the formation of O,O-dialkyl esters of long chain alkylphosphonic acids (**5a-d**), (**6a-d**), (**7a-d**) and (**8a-d**) as a mixture of homologues and isomers at 125-140^oC for 3-12 h(TABLES 3-8).

It should be noted that the initial O,O-dialkyl phosphites (**3a,b**) are good dissolved in water. That is why

Initial compounds quantity(g(mmol))	Reaction conditions temp.(°C)/Time(h)	Product yield (g(%))
3a 6.5(59.1)/ 1a-c 15.0(62.9)/ 4 0.4(0.8)	135-140/3	5a-d 16.7(81) ^a /13.8(67) ^b
3a ^d 87.3(793.6)/ 1a-c 100(419.5)/ 4 0.9(3.7)	120-130/3	5a-d 120.5(87) ^a
3a 4.5(40.9)/ 2a-c 13.2(40.9)/ 4 0.2(3.7)	130-140/10.5	6a-d 11.6(66) ^b
3b 17.6(106.0)/ 1a-c 25.3(106.1)/ 4 4.8(19.8)	135-140/10	7a-d 31.4(73) ^e /24.4(57) ^c
3b 7.7(46.7)/ 2a-c 15.0(46.5)/ 4 1.0(4.1)	135-140/12	8a-d 14.0(62) ^{b, f}

^aYield of crude products, ^bYield of products isolated by means of a thin layer distillation, ^cYield of product isolated by vacuum distillation, ^dIn molar ratio of 1a-c:3a as 1:2, ^cYield of product isolated by vacuum evaporation(0.06 mm Hg) of non-reacted olefins, ^fProducts were purified by column chromatography

CHEMICAL TECHNOLOGY An Indian Journal

111

Prod.	B.p. (0 C) (mm Hg) a /m.p(0 C)	n _D ²⁰	d ₄ ²⁰	Molecular <i>formula</i> (mol. mass)	Found/(calc.), %P	³¹ P NMR δppm (ratio)
Fa Jc,d	110 115(0 05) ^b /15 20	1 4650	0.0045	C ₁₈ H ₃₉ O ₃ P(334.4)	9.27/	33.8, 35.0, 37.1
5a-0	110-115(0.05) /15-20	1.4659	0.9945	C ₂₀ H ₄₃ O ₃ P(362.4)	(9.26-8.55)	(12:84:4)
				C ₂₂ H ₄₇ O ₃ P(390.4)		
	170(0.02)	1 4 () 0	0.0000	$C_{24}H_{51}O_3P(418.5)$	6.72/	25.0, 24.1(2.5, 1.0)
0a- a	170(0.02)	1.4628	0.9088	$C_{26}H_{55}O_3P(446.5)$	(7.93-6.53)	35.9, 34.1(2.5:1.0)
				C ₂₈ H ₅₉ O ₃ P(474.4)		
7 . 1	170, 190(0, 02)	1 4590		C ₂₂ H ₄₇ O ₃ P(390.4)	7.63/	29.3, 30.0, 31.4,
/a-a	170-180(0.02)	1.4580		$C_{24}H_{51}O_3P(418.5)$	(7.93-7.40)	31.8(80:5:7:7)
				C ₂₈ H ₅₉ O ₃ P(474.6)		
o Je,f		1 4200		C ₃₀ H ₆₃ O ₃ P(502.6)	6.16/	28.7, 30.2, 33.2,
ða-u		1.4399		C ₃₂ H ₆₇ O ₃ P(530.6)	(6.53-5.54)	35.4(3:20:76:10)
				$C_{34}H_{71}O_{3}P(558.7)$		

TABLE 4 : Physical, analytical and ³¹P NMR spectral data of products obtained

^aTemperature of thermal element of a thin layer distillation apparatus, ^bBp of vacuum distillation, ^cGC retention time, min: 15.88-19.18, ^dKinematic viscosity η²⁰, ñSt: 17.88, ^eR, 0.74(AcOEt), ^fGC retention time, min: 12.78-16.91

TABLE 5 : IR spectral data of the products obtained

 TABLE 6 : ¹H NMR spectral data of the products obtained

	1		
Product	v, cm ⁻¹	Product	CDCl ₃ , δ, ppm , J, Hz
	2940, 2925, 2854 v(CH ₃ as, s; CH ₂ as, s); 1464		0.88(t, 3H, CH ₃ CH ₂ CH ₂ , ³ J _{HH} 7.0); 1.27 [broad s,
5 a d	δ(CH ₃ as), δ(CH ₂); 1378 δ(CH ₃ s); 1199		C(CH ₂) _n C); 1.37[d, 3H, CH ₃ C(H)P]; 1.62(m, 2H,
5a-a	v(P=O); 1034 v[(P)O-C)]; 995 v(OC-C); 842	5a-d	PCH ₂ CH ₂ CH ₂); 1.74(m, 2H, PCH ₂ CH ₂); 1.96(m,
	$v(PO_2 as, s)$.	Ja-u	1H, PCHR ₂]; 2.04(m, 2H, PCH ₂];
	2924 2853 v(CH ₂ as s: CH ₂ as s): 1464		3.64[m,(CH ₃ O) ₂ PCHR ₂]; 3.73 and 3.74 [two d,
	$S(CH, a_2)$; $S(CH, b_1, 1279, S(CH, a_2); 1202$		$6H_{1}(CH_{3}O)_{2}P$, ${}^{3}J_{PH}$ 10.71 and ${}^{3}J_{PH}$ 10.98].
6a-d	$O(CH_3 as); O(CH_2); 1578 O(CH_3 s); 1205$		$0.83(t, 3H, CH_3CH_2, {}^{3}J_{HH} 7.0); 1.27$ [broad s,
	v(P=O); 1052 v [(P)O-C)]; 989 v(OC-C); 888		C(CH ₂) _n C)]; 1.38(d, 3H, CH ₃ C(H)CH ₂ P); 1.59(m,
	$v(PO_2 \text{ as, s}).$	6a-d	2H, PCH ₂ CH ₂ CH ₂); 1.92(m, 2H, PCH ₂ CH ₂);
	2940, 2926, 2854 v(CH ₃ as, s; CH ₂ as, s); 1464		1.99(m, 2H, PCH ₂ CH ₂); 3.71 [d, 6H,(CH ₃ O) ₂ P, ³ J _{PH}
	$\delta(CH_3 as); \delta(CH_2); 1380 \delta(CH_3 s); 1247$	7a-d	11.0]; 3.74 [d, 6H, $(CH_3O)_2P$, ³ J _{PH} 11.0].
7 a-d	v(P=O): 1008 $v[(P)O-C)$]: 983 $v(OC-C)$: 891		$0.85(t, 3H, CH_3C, {}^{3}J_{HH} 6.5); 1.23$ [broad s,
	$v(PO_{a} \approx s)$		$C(CH_2)_nC]$; 1.27 {d, 12H, [(CH_3)_2CHO]_2P, ³ J _{HH}
	$V(1 O_2 us, s)$.		5.8}; 1.45(m, 2H, PCH ₂ CH ₂ CH ₂); 1.50(m, 2H,
	2940, 2920, 2833 V(CH ₃ as, s, CH ₂ as, s), 1400		PCH ₂ CH ₂); 1.97(m, 2H, PCH ₂ CH ₂); 2.34(m, 1H,
8a-d	$\delta(CH_3 \text{ as}); \delta(CH_2); 1374 \delta(CH_3 \text{ s}); 1242$		PCH ₂ CH(CH ₃)CH ₂); 4.66 {m, 2H, [(CH ₃) ₂ CHO] ₂ P}.
	v(P=O); 1009 v [(P)O-C)]; 984 v(OC-C); 894		$0.80(t, 3H, CH_3CH_2CH_2, {}^{3}J_{HH} 7.0); 1.18$ [broad s,
	$v(PO_2 as, s).$		$C(CH_2)_nC$]; 1.22(d, 12H, [(CH_3)_2CHO]_2P, ³ J_{HH} 6.2);
		8a-d	1.30(m, 2H, PCH ₂ CH ₂ CH ₂); 1.54(m, 2H,
we have used the water washing of crude reaction mix-			PCH ₂ CH ₂); 1.94(m, 2H, PCH ₂ CH ₂); 4.59(m, 2H,

we have used the water washing of crude reaction mixtures for the removing of non-reacted amounts of (**3a,b**). An organic solvent has often used so that destroy an emulsion formed. On the basis of GC, IR and ³¹P, ¹H and ¹³C NMR spectroscopy(TABLES 4-8), it was established that the products (**5a-d**), (**6a-d**), (**7a-d**) and (**8a-d**) were formed in high purity after water washing, drying with CaCl₂ and vacuum evaporating that increased the technological level of method developed. These compounds do not requiring further purification by vacuum distillation for they to find practical use.

The products (**5a-d**), (**6a-d**), (**7a-d**) and (**8a-d**) were obtained in rather high yields(62-81%)(TABLE 3) before the purification by vacuum distillation. To obtain analytically pure specimens of (**5a-d**), (**6a-d**),

 $\begin{array}{c} \text{PCH}_{2}\text{CH}(\text{CH}_{3})\text{CH}_{2}; 4.66 \ \{\text{m}, 2\text{H}, [\text{(CH}_{3})_{2}\text{CHO}]_{2}\text{P}\}.\\ 0.80(t, 3\text{H}, \text{CH}_{3}\text{CH}_{2}\text{CH}_{2}, {}^{3}\text{J}_{\text{HH}} 7.0); 1.18 \ [broad s, \\ C(\text{CH}_{2})_{n}\text{C}]; 1.22(d, 12\text{H}, [(\text{CH}_{3})_{2}\text{CHO}]_{2}\text{P}, {}^{3}\text{J}_{\text{HH}} 6.2);\\ \textbf{8a-d} & 1.30(\text{m}, 2\text{H}, \text{PCH}_{2}\text{CH}_{2}\text{CH}_{2}); 1.54(\text{m}, 2\text{H}, \\ \text{PCH}_{2}\text{CH}_{2}); 1.94(\text{m}, 2\text{H}, \text{PCH}_{2}\text{CH}_{2}); 4.59(\text{m}, 2\text{H}, \\ \hline [(\text{CH}_{3})_{2}\text{CHO}]_{2}\text{P}).\\ \hline \textbf{(7a-d)} \text{ and } \textbf{(8a-d)} \text{ they were further isolated by means} \\ \text{of a falling-film distillation and then vacuum distillation.} \\ \text{After removing of olefin admixtures the products} \\ \textbf{(5a-d)}, \textbf{(6a-d)}, \textbf{(7a-d)} \text{ and } \textbf{(8a-d)} \text{ were solidified as} \\ \text{white wax-like substances with lower melting points.} \\ \end{array}$

The ³¹P NMR spectra of(**5a-d**), (**6a-d**), (**7a-d**) and (**8a-d**)(TABLE 3) reveal a few singlets in the region of $\delta_{\rm p}$ 28-37 ppm in the practically same region as observed in other phosphonates with the structural fragment C-P=O^[15]. In the ³¹P NMR spectrum of crude (**5a-d**) dtained in the reaction of olefins of fraction of C₁₆-C₁₈ (**1a-c**) with O,O-dimethyl phosphite (**3a**) after water washing there are three singlet signals at $\delta_{\rm p}$ 33.8, 35.0

Full Paper

TABLE 7: ¹³C NMR spectral data of the products obtained^a

Product	CDCl ₃ , δ, ppm , J, Hz
	$14.1[s(q) CH_3 CH_2, {}^1J_{HC} 124.4]; 22.5[s(d)$
	PCH_2CH_2 , ${}^{2}J_{PC}$ 8.0]; 22.8 [s(t) CH_3CH_2 , ${}^{1}J_{HC}$
	124.4]; 24.8 [d(m) PCH ₂ CH ₂ , ¹ J _{PC} 139.9]; 26.3
	$[d(m) CH_3 CH_2 CH_2 P, {}^3J_{PC} 7.7]; 26.8[d(m)$
	$PCH_2CH_2CH_2$, ${}^{3}J_{PC}$ 7.7]; 29.4[d(m)
5a d	PCH ₂ CH ₂ CH ₂ , ⁴ J _{PC} 9.4]; 29.5 [s(t)
Sa-u	$CH_3CH_2CH_2CH_2$, ¹ J_{HC} 124.4]; 29.85[broad s(t)
	CCH ₂ C, ¹ J _{HC} 124.4]; 32.1 [s(t) CH ₃ CH ₂ CH ₂ ,
	${}^{1}J_{HC}$ 124.4]; 33.5[d(m) PCH ₂ CH, ${}^{1}J_{PC}$ 140.0];
	34.1 [d(m) PCH ₂ CH, ² J _{PC} 17.4]; 34.6[d(m)
	PCH ₂ CHCH ₂ , ³ J _{PC} 9.0]; 51.4 [m(m) POCH ₃];
	52.2 [d(d.q) POCH ₃ , ¹ J _{HC} 147.2, ² J _{PC} 27.6].
	$13.7[s(q) CH_3 CH_2 CH_2, {}^1J_{HC} 124.7]; 22.3[s(t)$
	CH ₃ CH ₂ CH ₂ , ¹ J _{HC} 124.7]; 23.67[s(t)
	$CH_3CH_2CH_2P$, ¹ J_{HC} 126.1]; 23.69 and 23.73
	[two s(two t) [(CH ₃) ₂ CHO] ₂ P, ${}^{1}J_{HC}$ 127.4]; 26.7
7a-d	$[d(m) PCH_2CH_2, {}^{1}J_{PC} 142.0, {}^{1}J_{HC} 127.4]; 29.4$
	[broad s(t) CCH ₂ C, ${}^{1}J_{HC}$ 124.7]; 31.6 [s(t)
	$CH_3CH_2CH_2$, ¹ J_{HC} 127.4]; 33.3[d(m)
	PCH ₂ CHCH ₃ , ¹ J _{PC} 138.0]; 69.3 {d(d.d)
	$[(CH_3)_2CHO]_2P$, ${}^1J_{HC}$ 149/9, ${}^2J_{PC}$ 7.3}.
	$13.7[s(q) CH_3 CH_2 CH_2, {}^{1}J_{HC} 124.7]; 22.3 [s(t)$
	$CH_3CH_2CH_2$, ¹ J_{HC} 124.7]; 23.67[s(t)
	$CH_3CH_2CH_2P$, ¹ J _{HC} 126.1]; 23.69 and 23.73
	[two s(two t) [(CH ₃) ₂ CHO] ₂ P, ${}^{1}J_{HC}$ 127.4]; 26.7
8a-d	$[d(m) PCH_2CH_2, {}^{1}J_{PC} 142.0, {}^{1}J_{HC} 127.4]; 29.4$
	[broad s(t) CCH ₂ C, ${}^{1}J_{HC}$ 124.7]; 31.6 [s(t)
	$CH_3CH_2CH_2$, ${}^{1}J_{HC}$ 127.4]; 33.3 [d(m)
	PCH ₂ CHCH ₃ , ¹ J _{PC} 138.0]; 69.3 {d(d.d)
	$[(CH_3)_2CHO]_2P$, ${}^1J_{HC}$ 149.9, ${}^2J_{PC}$ 7.3}.
$a({}^{13}C-{}^{31}D)$	spectra, signal form in the ¹³ C-{ ¹ H} NMR spectrum
was brough	i in draces
TABLE	8 : Mass spectral data of the products obtained

Product ^a	i-C ₄ H ₁₀ , m/e(I _{rel} , %)
5a-d	334.4[M] ⁺ ·(18); 362.4[M] ⁺ ·(14).
6a d	390.3[M] ⁺ .(2), 418.3[M] ⁺ .(3), 446.3[M] ⁺ .(3),
va-u	$474.4[M]^{+}(2).$
7a-d	$391.439[M]^{+}(46), 418.171[M]^{+}(34).$
8a-d	475[M] ⁺ (2), 503 [M] ⁺ (2).

and 37.1ppm in ratio 12:84:41(on the basis of signal integral intensities). It is of interest that the ³¹P NMR spectrum of (7a-d) prepared by the reaction of O,Odi-iso-propyl phosphite (2b) with olefins of fraction of C_{16} - C_{18} (1a-c) show four singlets at δ_{P} 29.3, 30.0, 31.4 and 31.8ppm in ratio 80:5:7:7. These resonances are shifted toward high field in comparison with the ³¹PNMR data of (5a-d).

In the ¹H NMR spectra(TABLE 6) of purified (5a-d), (6a-d), (7a-d) and (8a-d) no vinyl proton signals of initial olefins in the region of $\delta 4.76-5.88$ ppm were practically detected. On the basis of the ¹H NMR

spectra, adducts (5a,b), (6a,b), (7a,b) and (8a,b) were formed in accordance with anti-Markovnikow's rule as well as other radical addition of acidic phosphites into non-activated olefins with the inner C=C bond ^[1-10]. The ¹H NMR spectrum of 6a-d in CDCl₂ solution shows two doublets at δ_1 3.71 and δ_2 3.74ppm of the methyl protons of the $(CH_3O)_2 P \operatorname{group}({}^3J_{PH} 11.0Hz)$. Two small intensity multiplets at $\delta4.66$ and 4.59 ppm the ¹H NMR spectra of (7a-d) and (8a-d) were assigned to the methine protons of two *iso*-propoxy groups at the phosphorus atom POCHC₂. The ¹³C NMR spectrum of (5a-d) in CDCl₃ solution(TABLE 7) reveals a doublet at 24.8ppm of two protons of methylene group at the phosphorus atom PCH₂CH₂(${}^{1}J_{pc}$ 139.9Hz) that indicates about the addition of the phosphoryl fragment into the terminal carbon atom of the C=C bond of α olefins (1a) and (1b). In the case of non-terminally substituted adducts 5c,d, (6c,d), (7c,d) and (8c,d), it is difficult to exactly establish site of addition of the phosphoryl group into the inner C=C bond of olefins (1c) and (2c).

The electron impact mass spectrum of (5a-d) (TABLE 8) exhibits the mass peaks m/e 334.4 and 362.4 that being attributable to the molecular ions[M]⁺. of two specimens of 5 formed from the olefins of C_{16} and C₁₈(calculated M: 334.4 and 362.4, respectively). Precession values of mass peaks m/e 391.439 and 418.171 were attributed to the molecular ions[M]⁺ of 7a-d obtained by addition reaction of olefins of C_{22} and C₂₄ with O,O-di-iso-propyl phosphite(2b) (calculated M: 390.4 and 418.5, respectively).

Broad bands of large intensity presented at v 1185-1247Cì⁻¹ in the IR spectra of (5a-d), (6a-d), (7a-d0 and(8a-d)(TABLE 5) are due to the valence vibrations of the P=O bond. Symmetric and antisymmetric valence vibrations of the PO₂ group appear as bands of medium intensity at v 808–891 cm⁻¹.

When 2-fold excess of the initial O,O-dimethyl phosphite (3a) was involved in the reaction mixture with olefins (1a-c), the yield of (5a-d) is increased to 87% (TABLE 3). The optimal reaction conditions (reaction time and temperature) were determined by the ³¹P NMR spectroscopy. Products (5a-d), (6a-d), (7a-d) and (8a-d) were formed up to 70-75% in the during of 3h. The further heating of the reaction mixtures up to 9-10 h results in the increasing of the yields of (5a-d),

113

(6a-d), (7a-d) and (8a-d) to 4-6%. When the prolonging heating of the reaction mixtures more than 16 h were performed, the decreasing of yields of products(5a-d), (6a-d), (7a-d) and (8a-d) and partially decomposition of initial phosphites (2a,b) were observed. On the basis of kinetic study and the ³¹P NMR spectra it was established that products(5a-d) were initially appeared in the reaction mixture of O,O-dimethyl phosphite(3a) with olefins(1a-c) at 110°C. No reaction is observed below 110°C. This reaction is mostly completed for 30min at 130°C. Thus, very thin temperature region of 135-140°C was established that leads to maximum of product yields.

COCLUSIONS

Thus, it was shown that one of the efficient approaches of utilization of higher olefins of industrial fractions C_{16} - C_{18} and C_{20} - C_{26} as waste materials of olygomerization of ethylene involves development of convenient methods of their phosphorylation by use of O,O-dialkyl phosphites. The phosphorylation of higher olefins seems to be readily monitored by spectral means especially by ³¹P NMR. Advantages of method developed may be ecologically pure processes of manufacturing of non-toxic phosphorylated products possessed properties of practical use(steel corrosion inhibitors, fire-proof agents, plasticizers in food polymer films, surface-active agents etc).

ACKNOWLEDGMENT

The study was performed on the financial support of the Academy of sciences of Republic of Tatarstan (Russia)(State contract No. 07-7.2-8/2006(G)).

REFERENCES

- [1] N.Vennootschap; Pat. 666918 GB (1948).
- [2] W.E.Hanford, R.M.Joyce; Pat. 2478390 USA, (1949).
- [3] Pat. 694772 GB, (1948).
- [4] A.R.Stiles, D.Harman, F.F.Rust; Pat. 2724718 USA, (1955).
- [5] A.N.Pudovik, I.V.Konovalova; Zh.Obshch.Khim., 29, 3342 (1959).
- [6] A.R.Stiles, D.Harman, F.F.Tust; Pat. 2724718 USA, (1955).
- [7] A.R.Stiles, W.E.Vaughan, F.F.Tust; J.Amer.Chem. Soc., 80, 714 (1958).
- [8] A.N.Pudovik, I.V.Konovalova; Zh.Obshch.Khim., 30, 2348 (1960).
- [9] C.E.Griffin; J.Org.Chem., 25, 665 (1960).
- [10] W.Ohlendorf; Pat. 19706384 Ger., (1997).
- [11] L.A.Hamilton, R.H.Williams; Pat. 2957931 USA, (1960).
- [12] M.Gaboyard, Y.Hervaud, B.Boutevin; Phosphorus, Sulfur, Slicon, 177, 877 (2002).
- [13] D.S.Connor, Pat. 4108889 USA, (1978).
- [14] V.V.Kormachev, M.S.Fedorenko; 'Preparing Phosphorus Chemistry', Institute of Technical Chemistry of Ural Branch of RAS; Perm, Russia, (1992)
- [15] M.M.Crutchfield, C.H.Dungan, J.H.Letcher, V. Mark, J.R.VanWazer; P³¹ Nuclear Magnetic Resonance, in M.Grayson, E.J.Griffith (Eds.); 'Topics in Phosphorus Chemistry', Wiley and Sons; New York, 5, (1967).