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ABSTRACT

The classification of gene expression data to determine different type of
tumor samples is significantly important to research tumorsin molecular
biology level for making further treatment plan of the patient. Particle swarm
optimization (PSO) has employed as a solution for classification and
clustering in bioinformatics. In this study, a classifier based on the two
layer particle swarm optimization (TLPSO) algorithm is established to
classify the uncertain training sample sets obtained from gene expression
data of breast, prostate, lung and colon tumor samples. Compared with
PSO and K-means algorithm in validation, the classification stability and
accuracy based onthe proposed TLPSO algorithmisimproved significantly,
which may provide more information to clinicians for choosing more
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appropriate treatment.

INTRODUCTION

Inlast decades, it has been increasingly recognized
that targeting specific therapiesto distinct tumor sub-
types can hel p maximizing the treatment efficacy and
minimizing thetoxicity to normal organg¥. Soan accu-
rate cancer classification becomes anecessity. How-
ever, conventional cancer classficationlargdy rdieson
acomplex and inexact combination of clinical and his-
topathological data?. These classic methods cannot
provide an accurate classification when dealing with
atypica tumorsor morphologicaly indistinguishabletu-
mor subtypes.

Advancesintheareaof genemicroarray technolo-
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gieshaveledto promiseof cancer diagnosisusing new
molecular based approaches?. It offershopethat can-
cer classification can be objectiveand highly accurate,
which could provideclinicianswith theinformationto
choosethe most appropriate forms of treatment.

Prediction of the diagnostic category of atissue
sampleinidentified categoriesisknown asclassifica-
tion. A challengein prediction thediagnostic categories
using microarray dataisthat the number of genesis
usudly much greater than the number of tissuesamples
available”.

Multiclassclassification techniques can beroughly
dividedintothreetypes. Thefirst typeisthebinary clas-
gficationdgorithmwithlimited gpplicationfor twoclass
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problems, indluding wei ghted voting scheme®, K nearest
nei ghborg®, support vector maching”, deterministic
forest’®. The second one is the decompositions of
multiclass problemsinto binary ones combining with
other schememethods, such astheone-versus-rest and
the one-versus-one® method. Thelast typeisdirectly
classification of multiclassexpression data, including
genetic programming*® with no global search ability
and particle swarm optimization usualy with unstable
prediction resultg*Y.

Inthis paper, thetwo-layer particle swarm optimi-
zation (TLPSO) agorithmisapplied to multiclasstu-
mor sampl e dlassfication. Themulticlassgeneexpres-
sondata, which containsbreadt, lung, prostateand colon
tumor data, isused assampledata. Inorder to evd uate
the performance of the proposed approach, the par-
tideswarm optimization (PSO) and K-meansagorithm
isdso gppliedtothe same geneexpression datato com-
paretheresultsof them.

METHOD

Two-layer particleswar m optimization

TheTLPSOisanove evolutionary dgorithm from
PSO agorithm, whose block diagram can be shownin
Figure. 1. InPSO, each particlemovesaroundinaD-
dimensional search spacesimultaneously based onits
own memory and knowledge gained by theswvarm asa
wholeto find thebest solution*?. In TLPSO, thereisa
two layer structure: top layer and bottom layer’*3. The
whole particles N are divided into M swarms, each
swarm contains N/M particlesin the bottom layer, M
swarmsconstitutethetop layer. Each global best posi-
tion in each swarm of thebottom layer isset to bethe
position of the particlein the swarm of thetop layer.
Therefore, theglobal best positionintheswarm of the
toplayer influencesindirectly the particlesof each swvarm
inthebottom layer. Furthermore, amutation operation
isadded into particles of each swarm in the bottom
layer. Consequently, thediversity of thepopulationin
the TLPSO increasesso that the TLPSO hastheability
toavoidtrappingintoaloca optimum.

Initidly, M swarmsof N particles, xi*,j=1.2,...,M,
k=1, 2,..., N, arerandomly generated in the bottom
layer, where x ik isthepostion of thek-th particleinthe
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J-thswarm of the bottom layer, theglobal best position
of thej-thswarm, y!,je/1,2,..., M}, isdetermined.

Here, the globa best position of the swarm in the bot-
tom layer isset to bethe position of the particlesinthe
swvamof thetop layer. Thatis, theparticlesof theswarm,

y!inthetop layer are determined. Then, the global

best position of the swarm, Y, , inthetop layer is

determined according to thefitness val ues of the par-
ticlesinthetop layer.

Datadescription

Themulticlassexpression dataused in thisstudy
contains4tumor types, including breast, prostate, lung
and colon asthey are the most well-known and com-
mon tumor diseasein adults, comprising amost 50% of
all tumorg'¥, Each tumor sampleused in this experi-
ment contains 103 samples and 5521 genes produced
by HG-U94A platform(*®.,

Uncertain sample set

Asthecomposition and quantity of training and test-
ing samplesusualy playsafundamentd rolein classfi-
cation, researcheshave been accustomed to using ex-
isting or divided training and testing detasets. However,
divided training and testing sampleswill not awayshbe
existing especidly inmulticlasstumor geneexpresson
data. Theother difficulty isthat it isnot an easy way to
confirm which composition of training and testing
sampleswill bebest for classification. In order toget an
objectiveand comprehensiveevaluation for classifica
tion results, thefollowing method isdesigned. First,
training samplesarerandomly selected from different
subtypes. Then testing samplesare acquired by remov-
ingtraining samplesfromthewholedataset. Findly, re-
peat the process by training samplesincreasingfrom5
to 20withaninterva of 5 samplesto obtain 8 different
combinationsof training and testing samples.

Classification procedure

Data or eprocessing

Toavoid overfitting, thedataares mply normadized
to have zero-mean and one standard deviation.

Initial particlepopulation
M particlesare generated randomly with indepen-

dent position and velocity. Dimensionality was 5521
corresponding to number of genes.

Establish classifier

A classifier based on four clustering centralsare
expressed by fithessand position va uesand established
by applying the TLPSO a gorithm to training samples
of different subtypesrespectively for breast, prostate,
lung, and colon.

Validity
Theclassifierisused to vdidatetesting samples.
Repeat

Thereare100redizationsof theclassfier by using
randomly sel ected training and testing samplesto pro-
duceaseriesof distribution of classification results.

Change samplesand r epeat

The process described abovefor other subgroups
isrepeated with randomly selected training and testing
samples. Theresultsare compared to evaluate the per-
formance of the proposed approach inthis paper. Fig-
ure.2 showstheflow chat of classification.

RESULTSAND DISCUSSION

Multiclasstumor gene expression datacontains 26
breast samples, 26 prostate samples, 28 lung samples
and 23 colon samples. Each sample consists of 5521
genes. Initidly, 5 samplesare sel ected randomly from
each tumor typeto obtain totally 20 training samples
and 83 testing samplesfor training the classifier based
on TLPSO dgorithm. Theclassifier isdescribed asthe
form of twovariables, whicharegloba best fitnessvaue
anditspodgition of each sample. Findly, testing samples
areusedtovdidatetheclassifier which could beevalu-
ated by counting the correct predi cted testing samples.

Theclassfication processisrepested for 100 times.
However, longer timeisneeded for theclassifying pro-
cesscompared with our last research of lessgenenum-
bers Anddifferent resultsfor randomly sdlected samples
areobtained each time becauserandomly selected train-
ing and testing samplesare not alwaysthesame. Itis
difficult to confirmwhich composition of training and
testing sampleswill produce the best classificationre-
sult. Inorder to make acomprehensive and compara-
tiveeva uation, classfication numbersareenlarged to
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100 timeswith 5 training samplesrandomly selected
for eachtime. Thedistribution of classfication resultsis
considered to be an influencing factor of performance.
To better understand which combination of training
sampleswill producethe best result, training samples
increasefrom 5, 10, and 15 to 20. Finally, each sub-
group of training sampleisrunfor 100timesand totally
400timesclassficationisperformed. Particlenumbers
and iteration timesof thefirst subgroupsareasore-
duced to 60 and 200 timesto shorten the performance
time. TABLE 1 showsdifferent composition of training
andtesting samples. Training samplesare20inthesec-
ond column and third row becausetherearefour tumor
typesin the dataset and 5 samples are randomly se-
lected for each one.

TABLE 1 : Different composition of training and testing
samples

Subgroups Results 1 2 3 4
Samples of Each Subtype 5 10 15 20
Training Samples 20 40 60 80
Testing Samples 83 63 43 23
Total samples 103 103 103 103
Genes 5521 5521 5521 5521

TABLE 2 showstheinitia conditions, best predic-
tion resultsand distribution of 100timesclassification
for each subgroup and algorithm. Resultsin column
TLPSO* and TLPSO comefrom thesamea gorithm.

However, thevalueof eachinitid variableisunvaried
for each subgroup in TLPSO* and gradudly increases
in TLPSO and PSO. Subgroupsand compositionsare
condstentinthethreedgorithms. TheBest Result means
the best classification result which containstheleast
wrongly predicted samples. Itisclearly that different
combination of training and testing samples can pro-
duce different results, which means onetime or two
times classification results could not be considered as
an evd uation way even though the numbersof best pre-
diction samplesareso close or already equal to total
testing one. 90%~100% meanstheratio of correctly
predicted samples to whole testing samples of each
samplecompositionisgreater than 90%.

Obvioudly, the classification results are unexpect-
edly poor and widely distributed in TLPSO* . The best
prediction rateisall below 80% in three subgroups.
The best prediction rates decreaseswith theincrease
of training samplesand the classficationresultsisrela
tively good in subgroup of lesstraining samples. It could
be considered asthe enlargement of training samples
have greatly accel erated the computation complexity
and makeit difficult to convergence.

In order toimprove the computati on performance,
theparticlenumbersand iterationtimesaretriedtorise
gradually for different subgroupsof TLPSO. TLPSO
INTABLE 2 showsthebest prediction result and distri-
bution of 100 times classification resultsfor each sub-

TABLE 2: Theinitialization, best prediction resultsand distribution of TLPSO*, TLPSO and PSO.

Algorithms Results TLPSO* TLPSO PSO
Subgroups 1 2 3 4 1 2 3 4 1 2 3 4
Particle Numbers 60 60 60 60 60 90 150 300 60 90 150 300
Iterations 200 200 200 200 200 250 300 600 200 250 300 600
Best Prediction Samples 77 49 26 16 77 57 35 22 80 60 43 23
Best Prediction Rate%o 92.77 77.7860.4769.57 9277 90.47 8140 9565 96.39 9524 100 100
90%~100% 2 0 0 0 2 1 0 1 40 50 52 67
80%~90% 15 0 0 0 15 4 1 0 55 45 4 31
70%~80% 20 6 0 0 20 12 1 1 5 5 4 2
60%~70% 35 9 1 8 35 18 11 6 0 0 0 0
50%~60% 16 25 9 6 16 27 11 10 0 0 0 0
40%~50% 10 28 20 14 10 19 28 20 0 0 0 0
30%~40% 2 17 37 50 2 14 25 37 0 0 0 0
20%~30% 0 5 33 20 0 5 22 22 0 0 0 0
10%~20% 0 0 0 2 0 0 1 3 0 0 0 0
0~10% 0 0 0 0 0 0 0 0 0 0 0 0
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group with different particlesnumbersand iteration
times Comparedtofixedinitidizeconditionin TLPSO*,
thedifferenceistherdativey better performancewhen
thesamepointisthat it aso decreaseswiththeincrease
of training sampl es, which demondtratesthat the class-
fication result isso sengtiveto thenumbersof training
samples. However, itisimportant to notethat the clas-
sification ratio could always surpass 80% at least in
onetimeclassification for each subgroup which pro-
videsacrucia point for further comparison.

Figure 3 showsthebox plotsof classification re-
sultsfor each sample compostion with different initial
conditions and respective results. On each box, the
central lineisthe median and the edges of thebox are
the 25th and 75th percentiles. Thewhiskersextend to
the most extreme data points not considered outliers,
and outliersareplotted individudly. Shorter and upper
of thebox meansthe better of the performance. The
particlenumbersand iterationtimeareunchangesblein
subgroups of the TLPSO*, whileit increasesgradually
withtheexpansion of training samplesin TLPSO. Itis
clear that both the best and average prediction result of
TLPSO isbetter than TLPSO*.

Baoxplot Comparison of 100 Times Classification for Cifferent Initialization in TLP!
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Figure3: Boxplot comparison of 100timesclassification for
TLPSO* and TLPSO.

Inaddition, basic PSO dgorithmisusedto makea
comparisontofurther validate TLPSO. All parameters
andinitidizationincludedin PSO arethesameasinthe
TLPSO exceptingthevaueof M becauseitisthe spe-
cial for TLPSO. The corresponding dataof PSO in
TABLE 2 showstheresultsand distributions of PSO.
Thereisno clear differencefor thebest predictionre-
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sultsbetween PSO and TLPSO, whilethedistribution
of correctly predicted samplesiscompletely different.
In PSO, adl the classification ratios surpass 70% and
some of them beyond 90%. The performanceisim-
proved with the increase of training samplesfor the
TLPSO* and TLPSO. For the indicator of distribu-
tion, the performance of PSO ismore excellent than
the TLPSO. It isalso clear in Figure.4 that boxes of
PSO aremore sizableand symmetricd, while boxes of
TLPSO vary withtheir length and height.

Bosplot Comparison of 100 Times Classification for TLP30 and P30
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Figure4: Boxplot comparison of 100timesclassification for
TLPSO and PSO.

Finally, K-meansclassificationalgorithmisused to
make acomparison. Asan unsupervised learning algo-
rithm, the K-meansisused directly on all samplesdur-
ing theclassification procedure, inwhich the number of
clustering centralsis4 determined by prior knowledge.
However, theclassification resultsof K-meansaredif-
ferent and vary greatly each time. So, it can be con-
cludefrom TABLE 3that theK-meansisnot astable
and accurate classification agorithm for samplesused
inthisstudy.

The superiority of PSO dgorithmistheimproved
accuracy of itsclassficationasdl prediction ratiossur-
pass 70%in 100 times classfication. However, thesta:
bility of the algorithm cannot deduced from those ex-
perimentsresultsfor the reason that randomly selected
combinations of training and testing samplesused for
PSO and TLPSO makeit difficult to further compari-
son. Thesamepoint for thethreedgorithmsisthe pre-
st clustering numbers, whilethedifferenceisthepro-
ng way and their performance.
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In order to make acomprehensive comparison of
thethreea gorithmsfor better understandingtheir sta-
bility and accuracy, asubgroup of fixed sample combi-
nation which producesthe best prediction result and
accuracy in 100 times classification isused to make
further dassfication. Paticlenumbersanditerationtimes
are enlarged to 1000 and 2000 respectively and are
unchangeabl e in each subgroup. For convenience of
comparison thetimerequired for thesea gorithms, just
10timesclassficationisperformed in each subgroup
of eachdgorithm.

AsshowninTABLE 3, theclassficationresultsare
amost thesamein TLPSO of each subgroup, but there
isgreat different for PSO and K-means. It can be seen
that dthough theresultsbased on PSOisexcellent for
subgroup 4, the numbers and names of wrongly pre-
dicted samplesvary greetly each timefrom subgroup 1
to subgroup 3. It meansthat there should bemoretran-
ing for thea gorithmif better result needtobegot. Itis
clear that both accuracy and stability of theresultsbased
on K-meansisno good that theleast wrongly predicted
samplesare4 while the most ones are more than 20.

TABLE 3: Wrongly predicted samplesof the TL PSO, PSO and K -meansin 10timesclassification

Wrongly predicted samples

N Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 All the samples

O TLPSO PSO TLPSO PSO TLPSO PSO TLPSO PSO K-means

1 66 60,70 15,16,66 2,7,14 13,16 7,16 15 23 13-16,53-80

2 66 60,70 15,16,66 14,37,52,62,90,92,93 13,16 60,70 15 0 13,15,16,67

3 66 60,70 15,1666 14,57,61,62,73 13,16 60,70 15 20,23 6,13-16,53-80,81,84,87,89,90
4 66 60,70 15,16,66 14,61,62,73,93 0 60,70 15 23 13,15,16,55,62-66,68-70,81,84
5 66 1,3860,7015,16,66 2,7,14 13,16 70 15 0 6,13-16,59,66,

6 66 38,6070 15,16,66 14,93 13,16 70 15 0 6,13-16,53-80,81,84,87,89,90
7 66 60,70 15,16,66 2,14 13 7,1885,89,92 15 20,23 13,15,16,67

8 66 14,60,70 15,16,66 2,7,14,16 13 7 15 0 13,15,16,55,62-66,68-70,81,84
9 66 60,70 15,16,66 2,7,14 13,16 0 0 23 6,13-16,59,66,

10 66 60,70 15,16,66 2,14 13,16 70 15 0 13-16,53-80

However, thenumbersand names of wrongly predicted
samples are amost the same in each subgroup of
TLPSO. In subgroup 1 and 4, just one of them ap-
pears aswrongly predicted sample and even none of
themarisesinonetime. Theclassificationresultisalso
stablein subgroup 2 and 3, though therearemorethan
one mistaken results. Besides, thereisno mistakein
onetimeclassificationin subgroup 3and 4 for large
numbersof training sample, whichisemployedinthis
experiment. Itisalso clear from Figure.5 that both the
stability and accuracy of TLPSO issuper than other
twoagorithms.

CONCLUSIONS

Inthis paper, aclassification procedure based on
TLPSO agorithmisestablished and eva uated by han-
dling thetumor gene expression dataof 103 samples
which contain 5521 genesfor each sample and belong
to4 different type. Thesedataaredividedinto 4 train-

ing and testing subgroupsbased on randomly selection
srategy during the experiment.

100 timesclassification for each subgroup is per-
formed to demonstrate the performance of TLPSO.
Theindicator of best prediction rate almost beyond
80%, whilethedistribution of prediction accuracy dif-
fers greatly compared to PSO. It is because that the
particle number and iteration timeisnot largeenough
for TLPSO. Thenacomparisonwith PSO and K-means
agorithmin 10 timesclassification for subgroupswith
fixed samplecombinationiscarried out. Thebest pre-
diction resultsshow that the TLPSO outperformsthe
PSO and K-meansin both of the stability and accuracy
duringthe 10timesclassification. Consider thecharac-
teristic of PSO, whichismorelikely trapped inlocal
optimum, soit could not waysreach global optimum
ineachtime. For K-means, numbersof wrongly pre-
dicted samplesvary greatly and thereisno referenced
value. In conclusion, both of the stability and accuracy
of TLPSO outperformsthetwo algorithms.
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Our further researchwork includes stability valida-
tion and performanceimprovement in datasetswith
larger number classes and genes. We will also make
moredetailed researchto comparethedifferent classi-
fication resultsamong tumor diseases.

ACKNOWLEDGMENT

Thiswork was supported by theNational Natural
Science Foundation of Chinaunder Grants 61062005.

REFERENCES

[1] Xiaohong Huang, Wei Pan; Linear regression and
two-class classification with gene expression data,
BIOINFORMATICS, 19, 2072-2078 (2003).

[2] JanedijunLiu, Gene Cutler, Wuxiong Li; Multiclass
cancer classification and biomarker discovery us-
ing GA-based algorithms, BIOINFORMATICS, 21,
2691-2697 (2005).

[3] S.Bicciato,A.Luchini, C.Di Bello; PCA digjoint mod-
els for multiclass cancer analysis using gene ex-
pression data, BIOINFORMATICS, 19, 571-578
(2003).

[4] Ka Yee Yeung, Roger E.Bumgarner, Adrian
E.Raftery; Bayesian model averaging development
of animproved multi class gene selection and clas-
sification tool for microarray data,
BIOINFORMATICS, 21, 2394-2402 (2005).

[5] A.M.Bagirov, B.Ferguson, S.Ivkovic; New ago-
rithm for multiclass cancer diagnosis using tumor
gene expression signatures, BIOINFORMATICS,
19, 1800-1807 (2003).

[6] Sridhar Ramaswamy, Pablo Tamayo, Ryan Rifkin;
Multiclass cancer diagnosis using tumor gene ex-
pression signatures, PNAS, 98, 15149-15154
(2001).

[7] T.R.Golub, D.K.Slonim, PTamayo et a; Molecular
Classification of Cancer: Class Discovery and Class
Prediction by Gene Expression Monitoring, Science,
286, 531-537 (1999).

[8] HepingZhang, Chang-YungYu, Burton Singer; Cell
and tumor classification using gene expression data:
Construction of forests, PNAS, 100, 4168-4172
(2003).

[9] Alexander Statnikov, Congtantin FAliferis, loannis
Tsamardinos et a; A comprehensive eval uation of
multicategory classification methodsfor microarray
gene  expression cancer diagnosis,
BIOINFORMATICS, 21, 631-643 (2005).

[10] JianjunYu, Jindan Yu, Arpit A.Almal, et a; Feature
Selection and Molecular Classification of Cancer
Using Genetic Programming, Neoplasia, 9, 292-303
(2007).

[11] YgjieLiu, Xinling Shi, ZhenzhouAn; Classification
of LeukemiaGene Expression DataUsing Particle
Swarm Optimization, The Sixth International Con-
ference on Genetic and Evolutionary Computing,
Kitakyushu, Japan, (2012).

[12] J.Kennedy, R.C.Eberhart; Particle Swarm Optimi-
zation, Proceedings of the 1995 | EEE International
Conference on Neural Networks, 4, 1942-1948
(1995).

[13] Chia-Chong Chen, Two-layer particle swarm opti-
mization for unconstrai ned optimization problems,
Applied Soft Computing, 295-304 (2011).

[14] Ahmedin Jemal, Freddie Bray, Melissa M.Center
and et a, Global cancer statistics, CA CANCER,
61, 69-90 (2011).

[15] Yujin Hoshida, Jean-Philippe Brunet, Pablo Tamayo,
et al, Subclass M apping Identifying Common Sub-
typesin Independent Disease DataSets, PLoS ONE,
1-8 (2007).

s LBioTechnology

An Tudian Yourual



