

Nano Science and Nano Technology

An Indian Journal

d Full Paper

NSNTAIJ, 9(4), 2015 [131-137]

Temperature calcination effect on phase and morphology of B₄C-nano TiB₂ composites by co-precipitation method

Saeid Abedini Khorrami^{1,*}, Hamid Reza Baharvandi², Roshanak Lotfi¹ ¹Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, (IRAN) ²Department of material, Malek Ashtar University of Technology, Tehran, (IRAN) E-mail: s_akhorrami@iau-tnb.ac.ir

ABSTRACT

In this study, determination of titanium tetraisopropanol (TTIP) concentration and calcination temperature were used to synthesis of B_4C -nano TiB₂ by co-precipitation method. TTIP, boron carbide and isopropanol were used as the precursor materials. B_4C composites with 2.5, 5.0, 7.5, 10.0, 20.0 and 40.0 ww% TiB₂ were obtained. The ww% TiB₂ on the phase constitution and microstructure during synthesis and densification was determined. In this process, TiO₂ nanoparticles is initially converted to titanium tetrahydroxide and Ti(OH)₄ as intermediate product in above 1523 K for 25-65 minutes. X-ray diffraction (XRD), scanning electron microscopy were used to determined phase and microstructure of B_4C -nano TiB₂ composites. The distribution sizes of TiB₂ nanoparticles on B_4C were calculated between 10-40 nm.

INTRODUCTION

As one of the hardest materials known, boron carbide ranks third behind diamond and cubic boron nitride. Being intrinsically brittle, B_4C often requires different additives to improve its sintering chemical, physical and mechanical properties. Also, diborides of group IVB transition metals are useful compounds for the high hardness and strencgth technological application at high temperature, electrical and good thermal conductivities, chemical inertness, oxidation and wear resistance, high thermal stability, high melting point (3253K), despite its low density (4.495 gcm⁻³) and high young's modulus (524 GPa)^[1]. These transition metal diborides are poten-

KEYWORDS

Titanium diboride; Co-precipitation method; Boron carbide; Nanoparticles; X-ray diffraction.

tial candidates for the development of materials that can withstand ultra-high temperatures and extreme environments^[2].

Recently studies, some researches of B_4C basedcomposites such as B_4C/ZrB_2 , TiB_2 -TiC/Fe, Al_2O_3/TiB_2 , TiB_2 -TiC, B_4C/TiC and B_4C/CrB_2 have been carried out^[3,4]. It has been considered that the additions of secondary phases to B_4C matrix can improve its mechanical properties^[5]. Since both TiB_2 and B_4C have high hardness and high melting points as well as chemical stability at elevated temperature, the TiB_2 - B_4C composites were expected to be used for advanced structural materials. Numerous researchers have shown the addition of TiB_2 to B_4C can decrease the porosity level and improve the fracture

Full Paper

toughness as well as flexural strength^[6-8]. A recent study showed that hot pressing and pulsed electric current sintering aided in increasing the density of titanium diboride while decreasing the sintering time^[9]. There are several methods to synthesize TiB₂- B_4C composites. One of them to make TiB_2-B_4C composites is via in situ reaction of TiO₂, carbon and B₄C^[10-12] or from elemental powders^[13]. Another way to prepare TiB_2-B_4C composites with up to 30 vol% TiB₂ were made by in situ synthesis from B_4C , TiO₂ and carbon black powder mixture during densification by pulsed electric current sintering^[14]. Also, the synthesis of these composites from a mixture of elements is an extremely exothermic process and combustion like methods can be employed as a practical means for their production. For instance, TiB₂ can be prepared by self-propagating high-temperature synthesis (SHS)^[15-18]. Mechanochemical processes refered to as mechanically induced selfsustaining reaction are similar to thermally ignited SHS methods^[19].

In the present research, TiB_2-B_4C composites with 2.5 to 40.0 ww% TiB_2 were obtained by in situ synthesis from bore carbide, titanium tetraisopropanol, isopropanol and resin as carbon source by using co-precipitation method.

EXPERIMENTAL MATERIALS AND METH-ODS

Bore carbide (95% pure, B_4C , Merck), titanium tetraisopropoxide (97%, TTIP, Alfa Aesar) and isopropanol (99.6%, Merck) were used to synthesis the solid solution. All materials were used without further purification. Bore carbide contains 5.0 ww% phenolic resin which used as carbon source. Deionized water was used for all experiments. The B_4C powders were 1 μ m for the mean size. The precursor powders were obtained by using co-precipitation method. TiB₂ was prepared by 1-3 reactions:

$\operatorname{io}(\operatorname{OCH}(\operatorname{CH}_3)_2]_4 + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Ti}(\operatorname{OH})_4 + 4 \operatorname{C}_3 \operatorname{H}_7 O$	
$\text{Ti(OH)}_4 \rightarrow \text{TiO}_2 + 2\text{H}_2\text{O}$	(2)
$\text{TiO}_2 + 0.5 \text{ B}_4\text{C} + 1.5 \text{ C} \rightarrow \text{TiB}_2 + 2 \text{ CO}$	(3)

Titanium tetraisopropoxide (99.5-2202.6g, 0.35-7.75 mol) and bore carbide (1000.01g, 18.1 mol) were dissolved in isopropanol (solution A). Also, bore carbide were dissolved in deionized water and isopropanol (solution B).

Solution B was gradually added to solution A. The obtained mixture was stirred and heated at 298 K for 4 h. In this research, B_4C -TiB₂ composites are contained 2.5-40.0 ww% TiB₂ nanoparticles. The amount of materials is given in TABLE 1.

The mixture was placed at 423-433 K till isopropanol evaporate. The X-ray diffraction pattern (XRD, X'Pert MPD, Philips, Holand) and Scannind Electron Microscopy image (SEM, XL-30 Philips, Holand) of initial B_4C is shown in Figures 1 and 2, respectively. The crystalline phases during the reaction were investigated by a X-ray diffractometer using Cu-k_a radiation (40 KV, 40 mA). The mixture of TTIP, B_4C and isopropanol was placed at 423-433 K till isopropanol evaporate.

Then, the powders were milled and after that, the XRD pattern and SEM was used to determine of particles size and to study of morphology that are illustrated in Figures 3 and 4, respectively. This powder were heated at 1523 K with 150 sccm (denotes cubic centimeter per minute at STP) argon flow. In this temperature, Ti(OH)₄ was changed to TiB₂. The nanostructure and composition of the B₄C-TiB₂ composites were examined by SEM.

XRD patterns and SEM images of this change

Sample	Initial B ₄ C (mole)	Initial TTIP (mole)	Final TiB ₂ wt%	Final B ₄ C wt%
B ₁	0.181	0.0035	2.5	97.5
B_2	0.181	0.0074	5	45
B_3	0.181	0.0113	7.5	92.5
\mathbf{B}_4	0.181	0.0115	10.0	90.0
B_5	0.181	0.0310	20.0	80.0
\mathbf{B}_{6}	0.181	0.0775	40.0	60.0

TABLE 1 : Calculation of stoichiometric of materials

Aano Solence and Aano Technology An Indian Journal

Figure 1 : XRD pattern of B₄C initial powder

Figure 2 : SEM images of B₄C initial powder

Figure 3 : XRD pattern of mixture of TTIP and B_4C after evaporation of isopropanol

Full Paper

Figure 4 : SEM image of mixture of TTIP and B_4C after evaporation of isopropanol

Figure 6 : SEM image of composites at 1523 K

Nano Solence and Nano Technology An Indian Journal are illustrated in Figures. 5 and 6 that were used to determine of nanoparticles size and morphologies, at 1523 K.

Also, XRD patterns and SEM images of B_4C -TiB₂ composites at 1523 K for 30 minutes with different of ww% of TiB₂ are shown in Figures 7 and 8, respectively.

RESULTS AND DISCUSSION

The JCPDS cards matching the spectra are 84-1286 for anatase TiO₂, 86-1129 for rhombohedral B_AC , 85-2083 for hexagonal TiB₂ and 73-2158 for H_3BO_3 . Since the C source from resin is amorphous carbon, only TiO₂ and B_4C powder were found in the starting powder after calcination. Figure 1 shows the XRD pattern of initial B_4C . It is considered that a small amount of boric acid exist because of oxidation of B_AC in presence of air. The XRD pattern of calcination powders (TiB, phase in 10.0 ww%) and the fractured and ground surfaces of the $B_{A}C$ -TiB₂ composites at 1523 K is shown in Figure 5. Also, Figure 6 shows SEM image of the B_4C -Ti B_2 composites at 1523 K. B₄C and TiO₂ phases were identified in the calcination powders. $Ti(OH)_4$ phase could be formed as an intermediate phase during the heating process that $Ti(OH)_4$ almost converted into TiO₂ phase. In TiB₂ 2.5 ww% in situ synthesized TiB_2 and B_4C phases were detected in composite powder at 1523 K as shown in Figure 7 (a). Most of the TiO₂ converted into TiB₂ phase at this calcination temperature. Also, it is considered that longer holding time or higher presintering temperature might be considered to decrease the amount of the remained TiO₂ at 1523 K. Figure 8 are shown SEM images of B_4 C-TiB₂ composites at 1523 K for 30 minutes with 2.5, 5.0, 7.5, 10.0, 20.0 and 40.0 ww% TiB₂. Study on SEM images show that the large dark gray phases were B_AC and the small bright white nanoparticles were TiB_2 az shown in Figure 8. The results show that most size of TiB₂ nanoparticle were 10-40 nm. The TiB₂ particles dispersed in all images of the B_4C -TiB₂ specimens. The amount of in situ synthesized TiB₂ increased with increasing the Ti(OH)₄ content. With increasing the TiB, content, the grain became smaller which might improve both the flex-

Figure 7 : XRD patterns of B_4C -Ti B_2 composites at 1523 K for 30 minutes with (a) 2.5, (b) 5, (c) 7.5, (d) 20 and (e) 40 ww% Ti B_2

ural strength and fracture toughness of the compos-

Figure 8 : SEM images of B_4C -Ti B_2 composites at 1523 K for 30 minutes with (a) 2.5, (b) 5, (c) 7.5, (d) 20 and (e) 40 ww% Ti B_2

K60.0K

500nm

ite as shown in Figure 8. XRD patterns show two phases of B_4C and TiB_2 in all ww% TiB_2 as shown in Figure 7.

CONCLUSIONS

Titanium diboride was synthesized successfully by co-precipitat method using TTIP, B_4C and isopropanol. In this research, TiB_2 in three steps produce on microstructure surfaces B_4C . In the first reaction, TTIP converted to Ti(OH)₄. Then TiO₂ formed from Ti(OH)₄ at 553 K. Finally, TiO₂ was transferred TiB₂. Calcination temperature was kept at 1523 K.

An Indian Journal

The XRD and SEM results are proved which two phases of B_4C and TiB_2 at different content are identified. The nanoparticle sizes of the synthesized TiB_2 on surface of B_4C microstructures were found between 10-40 nm.

REFERENCES

- W.G.Fahrenholtz, G.E.Hilmas, I.G.Talmy, J.A.Zaykoski; J.Am.Ceram.Soc., 90, 1347 (2007).
- [2] T.H.Squire, J.Marschall; J.Eur.Ceram.Soc., 30, 2239 (2010).
- [3] B.Aminikia; Powder Technol., 232, 78 (2012).
- [4] R.Rabiezadeh, A.Ataie, A.M.Hadian; Int.J.of Refrac-

137

tory Metals and Hard Mater., 33, 58 (2012).

- [5] B.Du, S.R.Paital, N.B.Dahotre; Optics & Laser Technol., 45, 647 (2013).
- [6] T.S.Srivatsan, G.Guruprasad, D.Black, R.Radhakrishnan, T.S.Sudarshan; Powder Technol., 159, 161 (2005).
- [7] V.Skorokhod, V.D.Krstic; J.Mater.Sci.Lett., 19, 237 (2000).
- [8] S.Yamada, K.Hirao, Y.Yamauchi, S.Kanzaki; J.Eur.Ceram.Soc., 23, 1123 (2003).
- [9] S.G.Huang, K.Vanmeensel, O.A.Malek, O.Van der Biest, J.Vleugels; Mater.Sci.Eng.A., 22, 1152 (2010).
- [10] V.Skorokhod, M.D.Vlajic, V.D.Krstic; J.Mater.Sci.Lett., 15, 1337 (1996).
- [11] W.Yu-jin, P.Hua-xin, Y.Feng, Z.Yu; Trans.Nonferrous Met.Soc.China, 21, 369 (2011).
- [12] L.Nikzad, R.Licheri, M.R.Vaezi, R.Orru, G.Cao; Int.J.of Refractory Metals and Hard Mater., 35, 41 (2012).

- [13] D.V.Dudina, D.M.Hulbert, D.T.Jiang, C.Unuvar, S.J.A.Cytron, K.Mukherjee; J.Mater.Sci., 43, 3569 (2008).
- [14] S.G.Huang, K.Vanmeensel, O.Vander Biest, J.Vleugels; J.Eur.Ceram.Soc., 31, 637 (2011).
- [15] A.Makino, C.K.Law; J.Am.Ceram.Soc., 77, 778(1994).
- [16] D.D.Radev, M.Marinov; J.Alloys Compd., 244, 48 (1996).
- [17] H.E.Camurlu, F.Maglia; J.Eur.Ceram.Soc., 29, 1501 (2009).
- [18] S.Nakane, T.Endo, K.Hirota; Ceram.Int., 35, 2145 (2009).
- [19] L.Takacs; Prog.Mater.Sci., 47, 355 (2002).