

December 2006

Volume 1 Issue 2-4

CHEMICAL TECHNOLOGY

Trade Science Inc.

An Indian Journal

🗢 Full Paper

CTAIJ, 1(2-4), 2006 [63-71]

## Synthesizes And Performance Of Poly (Ethylene Glycol Terphthalate Dimethyl Siloxane) Compound As Protective Material For Carbon Steel Alloy Of Petroleum Pipelines

Corresponding Author

O.M.Abo-Elenien Egyptian Petroleum Research Institute (EPRI), Ahmed El-Zomor St., #1, Nasr City 11727, Cairo (EGYPT) E-mail: drossamaa12@yahoo.com

Received: 22<sup>nd</sup> April, 2006 Accepted: 1<sup>st</sup> August, 2006

Web Publication Date : 27th December, 2006

## ABSTRACT

The poly (ethylene glycol terphthalate dimthylsiloxane) compound [PEGTDMSO] was prepared and confirmed by FTIR, NMR and GPC techniques. The carbon steel alloy specimens were provided from unused petroleum pipelines. The surfaces of specimens were prepared by polishing with different grade emery paper. PEGTDMSO was formulated with TiO2, ZnO2 and different ratios of silica gel as inorganic additives to produce seven formula designated from Y<sub>0</sub>- Y<sub>6</sub>. The toluene diisocyanate (TDI) was used as curing agent. The visual inspection, physical, mechanical and chemical properties such as, wet film thickness (WFT), dry film thickness (DFT), adhesion forces, bending, impact, hardness and thermal stability at 150 - 400 °C at intervals of 50 °C. Acid effect (10% H<sub>2</sub>SO<sub>4</sub>) at period time of 480 hr and the sealant water effect at period time of 1440 hr for the formed dry films were studied. The surfaces of films were visualy inspected by magnification power after chemical tests. The results indicated that the corrosion spots did not detect on the surface of the formed dry films from formula Y<sub>2</sub>-Y<sub>6</sub>. These films approved to be a protections agent for the surface of petroleum pipelines against corrosion. © 2006 Trade Science Inc INDIA

## KEYWORDS

PEGTDMSO; Unused petroleum pipelines.

# 

## INTRODUCTION

The carbon steel alloys are used at high temperatures in large scale for production and maunfacture of petroleum, petrochemical equipments and different industries. The carbon steel alloys are corroded quickly when subjected to both chemical and physical environmetal conditions<sup>[1-11]</sup>.

The types of protective coatings must be compate the metal surfaces without any change. The formation films are provided a barrier between the metallic surfaces and the surrounding corrosive medium. These include paints, varnishes, enamels, plastics and metals which were applied by brushing, electroplating, hot dipping flame spraying, etc.<sup>[4-15]</sup>.

Paintings are one of the most suitable, less expensive, and more efficient method for corrosion and wear control, which could be more suitable binders source and high efficiency as protective compounds<sup>[4-18]</sup>.

The aim of this work depends on the preparation of PEGTDMSO and is formulated with inorganic ZnO,  $\text{TiO}_2$ , and silica gel. The different ratio of curing agent TDI is used. The preparation surface of carbon steel alloy specimens AG-15 are coated by these formula. The visual inspection, physical, mechanical and chemical properties of the formed dry films are evaluated and discussed.

### EXPERIMENTAL

### Preparation of PEGTDMSO

The preparation of PEGTDMSO was carried out by reacting of 1.0 mol of terphthalic acid with 1.0 mol of ethylene glygol in three necked flask under mechanical sterrier. The water produced was collected and measured. After cooling the reaction mixture the dichlorodimethylsilane was added dropwise under inert media. The product PEGTDMSO was purified and confirmed by infrared analysis (FTIR), nuclear magnetic resonance (<sup>1</sup>HNMR) and molecular weight determination (M.Wt) by gel permeation chromatograph (GPC).

## Preparation of the painting formula

45 parts of PEGTDMSO compound were mixed with 35 parts of zinc oxide, 5 parts of  $\text{TiO}_2$  and different ratios of silica gel. The 5 parts of organic solvent mixture of (xylene, toluene and methylethyl ketone) were used. The toluene-di-isocyanate (TDI) was used at three concentrated ratios(5, 10 and 15%) as a curing agent, which were mixed with each other to form various formulation designated from Y<sub>0</sub>-Y<sub>6</sub>. These formulations were applied on the prepared surface of carbon steel alloy specimens by brushing method.

#### Preparation of the surface metal specimens

Unused tubes of carbon steel alloy type AG-15 were provided from petroleum pipelines of belayim petroleum company at Port -Fouad station to be used as specimens supplier. The specimens were cut as regular edged cuboids with dimensions  $\approx 8, 15, 0.1$ cm average. Each specimen was cleaned, polished with 150, 400, 600 emery paper, rinsed with distilled water, degreased with acetone, weight and finally stored under vacuum after wrapping with adhesive thin paper into sets. Each set includes specimens having nearly similar weight and surface area.

### The optimization steps

To obtain the optimum PEGTDMSO coatings were carried out under static air, at ambient pressure and temperature within a selection formula from  $Y_0$  to  $Y_6$ . A set of specimens were coated with these formula and cured by curing agent TDI at ambient condition. The coating specimens were gradually inspected to recorded the optimization conditions for each formula. The coating films over the surface of specimens were examined by measuring the WFT, DFT, adhesion, thermal stability, impact, bending, hardness and chemical tests.

The formation of the best coating was achieved in steps and kept constant through the optimization procedure.

#### The characterization techniques

#### Visual inspection

The visual inspection for the formation coating

CHEMICAL TECHNOLOGY An Indian Journal

65

as sealing, sagging, fish eyes, shirinking, cogulastion, smoothes and homogeneity were inspected and tabulated.

## **Physical properties**

Wet film thickness(WFT), dry film thickness (DFT), adhesion, thermal cycling test, electrical conductivity, and pinhole test of the formed coatings were carried out according to ASTM (D-1212), (D-1186 and 1005), (D 3359), BS-6670 Part 5 BS-6670 Part 5, ASTM (D-4399) and (D-5162), respectivily.

## Mechanical properties

Bending, adhesion forces, hardness, and impact tests were carried out according to ASTM (D-522), (D-3363) and ASTM (D-2794 and G14-88), respectivily.

## Chemical properties

The effect of organic solvents,  $10\% H_2SO_4$  and synthetic sea water 3.5% NaCl were carried out according to ASTM D-44, 4752, 468, 610, G-31 and BS-6670, respectively. The data of results were recorded and investigated.

## **RESULTS AND DISCUSSION**

The PEGTDMSO was prepared through the re-

action of ethylene glycol, terphthalic acid and dimethyl-dichlorosilane in presence of pyridine as acid acceptor according to the following equation:

 $\supset$ 



Where, n = M.Wt of poly (ethylene terephtalate) and m = M. Wt of PEGTDMSO

The evaluation of the physical and chemical structure of PEGTDMSO compound was carried out according to the following characterization techniques

## Infra Red technique (FTIR)

Figure 1 illustrates the FTIR spectrum for preparation of PEGTDMSO. The characteristic bands at 945.6 and 1101.5 cm<sup>-1</sup> represent the stretching vibration of CH<sub>2</sub>-O-Si groups, the band at 2875.6 cm<sup>-1</sup> for stretching vibration of Si-O and -CH<sub>2</sub> groups, the bands at 2957 cm<sup>-1</sup> for CH aromatic, the bands at 1245.4 cm<sup>-1</sup> for stretching vibration of Si-C group







An Indian Journal

## Full Paper

and the band at 3400 cm<sup>-1</sup> for stretching vibration of –OH groups.

## Nuclear magnetic resonance (<sup>1</sup>HNMR)

Figure 2 illustrates the <sup>1</sup>HNMR spectrum for PEGTDMSO. The integration 21.98, for the siloxane groups and 67.23, for ethylene glycol groups.

## Gel permeation chromatograph (GPC)

Figure 3 illustrates the typical GPC spectrum of PEGTDMSO. The number average molecular weight Mn for PEGTDMSO was 247, which was highly sensitive to the presence of small number of fraction of low molecular weight. The weight average molecular weight Mw of PEGTDMSO compound was 249, which was highly sensitive to the presence of small amounts by weight of high molecular (weight macro-molecules). The Z and Z+1 were average molecular weights or molar mass. From different molecular weights average. These observed that the Mn  $\leq$  Mw  $\leq$  Mz  $\leq$  Mz+1 have 247  $\leq$ 249 <250 <251. The polydispersity index was 1.004 for PEGTDMSO compound as the ratios of weight average molecular weight Mw/Mn. This ratio was unity for a polymer of uniform molecular weight and become larger as distribution become broader.

# Chemical composition of the paintings formula $Y_0 - Y_6$

The synthetic PEGTDMSO compound was blended with inorganic materials zinc oxide,  $TiO_2$  and silica gel as in TABLE 1. Toluene diisocyanate (TDI) was used as a curing agent at 5, 10 and 15 parts for each formula. The PEGTDMSO was used as a binder and it has also dispersant phenomena. **TABLE 1: Chemical formulae of PEGTDMSO cured** 

by different ratios of curing agents TDI

| Formula<br>composition/parts | Y <sub>0</sub> | $\mathbf{Y}_1$ | $\mathbf{Y}_2$ | <b>Y</b> <sub>3</sub> | $\mathbf{Y}_4$ | $\mathbf{Y}_5$ | <b>Y</b> <sub>6</sub> |
|------------------------------|----------------|----------------|----------------|-----------------------|----------------|----------------|-----------------------|
| PEGTDMSO                     | 45             | 45             | 45             | 45                    | 45             | 45             | 45                    |
| ZnO                          | 0              | 35             | 35             | 35                    | 35             | 35             | 35                    |
| Tio <sub>2</sub>             | 0              | 5              | 5              | 5                     | 5              | 5              | 5                     |
| Silica gel                   | 0              | 0              | 1              | 2                     | 3              | 4              | 5                     |
| Solvent                      | 5              | 5              | 5              | 5                     | 5              | 5              | 5                     |
| Curing agent%                | 5              | 5              | 5              | 5                     | 5              | 5              | 5                     |
|                              | 10             | 10             | 10             | 10                    | 10             | 10             | 10                    |
|                              | 15             | 15             | 15             | 15                    | 15             | 15             | 15                    |

The formulae  $Y_0 - Y_6$  were brushed on the prepared surface of carbon steel alloy specimens. The visual inspection, physical, mechanical and chemical properties for each formed film from formula  $Y_0 - Y_6$  will be investigated.

## Optimization conditions for curing agent

TABLE 2 illustrates the optimum conditions for the curing agent ratio of TDI. The touch dry time was the main factor, which determines the TDI concentration for curing the formed films on the surface of carbon steel alloy specimens. The inorganic additives affected each formula of  $Y_0 - Y_6$ . From the optimization studies of the curing agent TDI ratios. These indicated that the time of touch curing for formula  $Y_0 - Y_6$  were decreased by increasing inorganic additives.

TABLE 2: Data of the optimum condition for the curing agent TDI respect to time for PEG TDMSO formula at ambient condition.

| The ratio of   | Touch dry time for each formed films from the formula (hr) |                |                |                |                |                |                       |  |  |
|----------------|------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|-----------------------|--|--|
| agent<br>(TDI) | Y <sub>0</sub>                                             | Y <sub>1</sub> | Y <sub>2</sub> | Y <sub>3</sub> | Y <sub>4</sub> | Y <sub>5</sub> | <b>Y</b> <sub>6</sub> |  |  |
| 5%             | 16-22                                                      | 10-12          | 9-10           | 9-10           | 8-9            | 8-9            | 6-8                   |  |  |
| 10%            | 6-10                                                       | 5-8            | 5-8            | 3-7            | 3-7            | 3-6            | 3-6                   |  |  |
| 15%            | 3-5                                                        | 2-4            | 2-4            | 2-3            | 1-3            | 1-3            | 1-3                   |  |  |

## Physical properties

## Visual inspection

The formed films from formula  $Y_0-Y_6$  for PEGTDMSO compound were visually inspected and listed in TABLE 3. These data were showed that, the sealing was observed at  $Y_0$  only. On the other hand the formation films from formula  $Y_1-Y_6$  were not sealing, sagging, fish eyes, shrinkable, coagulation, smoothes and homogeneity for formed coatings.

## Calculation and measuring the WFT and DFT

The results of normalization weight of wet and dry films respect to surface area were calculated and given in TABLE 4. These data indicating that the DFT were increased with increasing the inorganic additives. Also, the measuring data of WFT and DFT were given in TABLE 5. These data indicates that, the DFT were increased by increasing the inorganic

# Full Paper «

TABLE 3: Data of the visual inspection after application of the painting films formed by formula  $Y_0 - Y_6$  of PEGTDMSO compound

| Formula | Sealing   | Sagging | Fish eyes     | Shrinking | Coagulation | Smoothes | Homogeneity      |
|---------|-----------|---------|---------------|-----------|-------------|----------|------------------|
| $Y_0$   | Sealed    |         |               |           |             |          |                  |
| $Y_1$   | no sealed |         |               |           |             |          |                  |
| $Y_2$   | no sealed | Not     | Not fish over | No        | No          | Llich    | Homogonoity of   |
| $Y_3$   | no sealed | INOL    | not fish eyes | shrinking | INU         | Tigii    | the formed films |
| $Y_4$   | no sealed | sagging | appeared      | siminking | coaguiation | smooth   | the formed mins  |
| $Y_5$   | no sealed |         |               |           |             |          |                  |
| $Y_6$   | no sealed |         |               |           |             |          |                  |

TABLE 4: The physical measurements for each formed film from PEGTDMSO wet and dry films at ambient condition and using curing agent TDI 10%

| Sym.           | Wt. of<br>cleaning<br>specimens<br>(g) | Specimens<br>area of<br>one<br>surface<br>(cm <sup>2</sup> ) | Wt. of<br>wet<br>coating<br>(g) | Normalized<br>wt. of<br>wet coating<br>per unit area<br>(g/cm <sup>2</sup> ) | Wt.<br>of dry<br>coating<br>(g) | Normalized<br>wt. of the<br>formed<br>dry coating<br>per unit area<br>(g/cm <sup>2</sup> ) | Curing<br>temp.<br>(°C) | Relative<br>humidity | Touch<br>dry<br>time<br>(hr) | Complete<br>dry<br>time<br>(days) |
|----------------|----------------------------------------|--------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------|-------------------------|----------------------|------------------------------|-----------------------------------|
| $Y_0$          | 71.2375                                | 111.8631                                                     | 4.5621                          | 0.0407                                                                       | 2.2825                          | 0.0204                                                                                     |                         |                      | 6-10                         |                                   |
| $Y_1$          | 71.5037                                | 112.0357                                                     | 5.1125                          | 0.0456                                                                       | 3.3885                          | 0.0302                                                                                     |                         |                      | 5-8                          |                                   |
| $Y_2$          | 72.0183                                | 112.7895                                                     | 5.1245                          | 0.0301                                                                       | 3.4015                          | 0.0301                                                                                     | Ambient                 |                      | 5-8                          |                                   |
| $Y_3$          | 70.9951                                | 111.0053                                                     | 5.1337                          | 0.0462                                                                       | 3.4107                          | 0.0307                                                                                     | Ambient                 | >50                  | 3-7                          | 3-5                               |
| $Y_4$          | 71.3891                                | 111.9837                                                     | 5.2015                          | 0.0464                                                                       | 3.4791                          | 0.0310                                                                                     | temp.                   |                      | 3-7                          |                                   |
| $Y_5$          | 71.5961                                | 112.0007                                                     | 5.2321                          | 0.0467                                                                       | 3.5103                          | 0.0313                                                                                     |                         |                      | 3-6                          |                                   |
| Y <sub>6</sub> | 71.9315                                | 112.0933                                                     | 5.2817                          | 0.0471                                                                       | 4.5601                          | 0.0406                                                                                     |                         |                      | 3-6                          |                                   |

TABLE 5: The physical and mechanical properties of the dry films formed from PEGTDMSO

| Symp. | WFT | DFT | Bending | Pinhole | Adhesion | Hardness | Impact | Electrical conductivity |
|-------|-----|-----|---------|---------|----------|----------|--------|-------------------------|
| $Y_0$ | 145 | 50  | fail    | fail    | fail     | HB       | fail   |                         |
| $Y_1$ | 110 | 67  | pass    | pass    | pass     | F        | fail   |                         |
| $Y_2$ | 103 | 69  | pass    | pass    | pass     | F        | pass   | Insulating              |
| $Y_3$ | 95  | 70  | pass    | pass    | pass     | Н        | pass   | at200 Ώ                 |
| $Y_4$ | 95  | 72  | pass    | pass    | pass     | Н        | pass   |                         |
| $Y_5$ | 93  | 75  | pass    | pass    | pass     | 2H       | pass   |                         |
| $Y_6$ | 93  | 78  | pass    | pass    | pass     | 2H       | pass   |                         |

additives, but the WFT were decreased.

## Adhesive forcing

The data of adhesive forces for the formed films from formula  $Y_0 - Y_6$  with the surface of carbon steel alloy specimens were given in TABLE 5. From these data, the adhesive forces of the formed dry films from formula  $Y_0$  was failed. On the other hand, the adhesive forces of the formed films from formula  $Y_1-Y_6$  were passed. These data showed that, the adhesion forces increased by increasing the inorganic additives.

## Electrical conductivity

The electrical conductivity data of the formed dry films on the surface of carbon steel alloy speci-

CHEMICAL TECHNOLOGY Au Iudian Journal mens were given in TABLE 5. The formation dry films from all formula were resisted the electricity until 200 ohm<sup>-1</sup>.

## Holiday (pinhole) detection

The data of holiday (pinhole) detection for the formed dry films from formula  $Y_0 - Y_6$  were given in TABLE 5. These data were matched with the net results obtained from electrical conductivity. These films have good insulating properties and promising as insulators (protected) to the surface of carbon steel alloy at 275 Volt.

## Thermal cycling test

The thermal cycling data for the formed films from the formula  $Y_0 - Y_6$  were showed in TABLE 6.

## ━━> Full Paper

TABLE 6: Thermal cycling tests (stability) of the dry films formed from PEGTDMSO at temperature ranged from 50 to 400°C and curing agent TDI

| Temp. | Dominal times |                | Weight losses for each formed films x 10 <sup>-4</sup> |                |                |         |                |                |  |  |  |
|-------|---------------|----------------|--------------------------------------------------------|----------------|----------------|---------|----------------|----------------|--|--|--|
| °C    | Period time   | Y <sub>0</sub> | Y1                                                     | Y <sub>2</sub> | Y <sub>3</sub> | $Y_4$   | Y <sub>5</sub> | Y <sub>6</sub> |  |  |  |
| 50    |               | 3.1            | 1.7                                                    | 1.6            | 1.5            | 1.5     | 1.5            | 1.4            |  |  |  |
| 75    |               | 3.9            | 2.1                                                    | 1.9            | 1.7            | 1.7     | 1.7            | 1.9            |  |  |  |
| 100   |               | 6.1            | 2.5                                                    | 2.3            | 2.1            | 2.1     | 2.1            | 1.9            |  |  |  |
| 125   |               | 6.5            | 2.0                                                    | 2.1            | 2.1            | 1.7     | 1.7            | 1.5            |  |  |  |
| 150   |               | 5.7            | 1.9                                                    | 1.7            | 1.5            | 0.9     | 0.9            | 0.7            |  |  |  |
| 175   |               | 4.3            | 1.2                                                    | 1.0            | 0.9            | 0.5     | 0.5            | 0.3            |  |  |  |
| 200   |               | 3.1            | 0.9                                                    | 0.7            | 0.5            | 0.0     | 0.0            | 0.0            |  |  |  |
| 225   | 6 hr's        | 1.1            | 0.7                                                    | 0.2            | 0.2            | 0.0     | 0.0            | 0.0            |  |  |  |
| 250   |               | failure        | 0.3                                                    | 0.0            | 0.0            | 0.0     | 0.0            | 0.0            |  |  |  |
| 275   |               | failure        | 0.0                                                    | 0.0            | 0.0            | 0.0     | 0.0            | 0.0            |  |  |  |
| 300   |               | failure        | 0.0                                                    | 0.0            | 0.0            | 0.0     | 0.0            | 0.0            |  |  |  |
| 325   |               | failure        | 0.0                                                    | 0.0            | 0.0            | 0.0     | 0.0            | 0.0            |  |  |  |
| 350   |               | failure        | 0.0                                                    | 0.0            | 0.0            | 0.0     | 0.0            | 0.0            |  |  |  |
| 375   |               | failure        | failure                                                | 0.0            | 0.0            | 0.0     | 0.0            | 0.0            |  |  |  |
| 400   |               | Failure        | Failure                                                | Failure        | Failure        | Failure | Failure        | Failure        |  |  |  |

The degree of temperature was ranged from 50 to 400  $^{0}$ C by increasing 50 $^{0}$ C intervals. The formation a film from formula Y<sub>0</sub> was failed at 250 $^{0}$ C, while the formation films from Y<sub>1</sub> is failed at 375 $^{0}$ C and from Y<sub>2</sub> to Y<sub>6</sub> was failed at 400 $^{0}$ C.

## Volatility of organic compounds

The volatility of organic compounds from the paints after curing was either estimated from the formulations and/or the use of organic solvent. In this situation the volatile organic compound were defined as blended organic solvent (toluene and xylene) and PEGTDMSO. Also, some methyl groups of the PEGTDMSO compound were hydrolyzed and evaporated (emission) during the curing process and the thermal effect on the formed films. Thus, the weight of the formed films decreasing until the weight was established.

### Mechanical properties

The mechanical properties were investigated through hardness, bending and impact technique. The evaluation data of the mechanical properties for the formed dry films from formula  $Y_0$  to  $Y_6$  were given in TABLE 5. The mechanical properties data for the formed dry films on the surface of carbon steel alloy specimens were improved with increasing the amount of fillers / inorganic additives.

## Mechanism

The presence of silicon on the surface of cured

films were improved the properties of the formed dry films. Mar resistance, anti-blocking and other features were enhanced by the presence of silicon. Although PEGTDMSO gives very good properties to the surface of a cured coating. This was sufficiently compatible with formulation to provide adequate storage stability. The structure of PEGTDMSO compound was terminated by hydroxyl groups in the form of Si–OH / C-OH. Which was cured by cyano groups in TDI. The polyurethane siloxane films were formed as follow:

The PEGTDMSO urethane films include the variation of very important groups, such as ester, siloxane and urethane groups. These groups were played an important role in improvement of the physical, mechanical and chemical properties of the formed dry films on the surface of carbon steel alloy specimens.

Too, the traces of cyano groups of TDI were reacted with hydroxyl groups of silica gel, humidity and minor hydroxyl groups on the surface of specimens. Thus, the formation films of the polyurethane on surface of carbon steel alloy were highly compacted, adhesive, internal cohesion, hardness and also free from any pinholes. The silicon atom has tetra, penta- and hexavalent, these gives good physico-chemical properties.







## **Chemical properties**

### The effect of organic solvents

The effect of the mixture of benzene, toluene, xylene(ASTM D-44) on the texture morphology of the formed dry films of formula  $Y_0 - Y_6$  were given in TABLE 7. These data were indicated that, organic solvents do not affect the texture of the formed dry films from formula  $Y_1 - Y_6$ . These were indicated on the compatibility of the binder with the inorganic filler/pigments and complete reaction with curing agent TDI. Thus, the formation of dry PEGTDMSO urethane films was resistant to the organic solvent, and can be applied in organic and petroleum media.

The formed dry PEGTDMSO urethane films mula  $Y_1$ -  $Y_2$  and  $Y_3$ - $Y_4$  were chalking only up to 16 from formula  $Y_1 - Y_6$  did not affected on rubbing by and 20 days respectively, while the formed films from **TABLE 7: Visual inspection of the effect of the organic solvents (toluene, benzene, xylene) on the formed** dry films from PEGTDMSO and curing agent TDI

MEK from 15-20 times (ASTM D-4752). These results were indicated that, the stability of zinc oxide and good compatible with the formed dry films.

## Evaluation of the performance of the protected films

## Effect of 10 % $H_2SO_4$

The data of the effective of 10% sulfuric acid (ASTM D 468 and 610) on the formed films from formula  $Y_0 - Y_6$  are given in TABLE 8. From these data, it is observed that the formed dry films from formula  $Y_0$  are affected by 10 % H<sub>2</sub>SO<sub>4</sub> after 10 days. On the other hand, the formation dry films from formula  $Y_1$ -  $Y_2$  and  $Y_3$ - $Y_4$  were chalking only up to 16 and 20 days respectively, while the formed films from **ic solvents (toluene, benzene, xylene) on the formed** 

| Perior of                |                    | Effect of the texture of the formed dry films |                |                       |                |                |                       |  |  |  |  |
|--------------------------|--------------------|-----------------------------------------------|----------------|-----------------------|----------------|----------------|-----------------------|--|--|--|--|
| immersion<br>time (days) | Y <sub>0</sub>     | Y1                                            | $\mathbf{Y}_2$ | <b>Y</b> <sub>3</sub> | $\mathbf{Y}_4$ | $\mathbf{Y}_5$ | <b>Y</b> <sub>6</sub> |  |  |  |  |
| 6                        | No charge          | No charge                                     | No charge      | No charge             | No charge      | No charge      | No charge             |  |  |  |  |
| 12                       | No charge          | No charge                                     | No charge      | No charge             | No charge      | No charge      | No charge             |  |  |  |  |
| 24                       | No charge          | No charge                                     | No charge      | No charge             | No charge      | No charge      | No charge             |  |  |  |  |
| 48                       | No charge          | No charge                                     | No charge      | No charge             | No charge      | No charge      | No charge             |  |  |  |  |
| 72                       | Partially swelling | Partially swelling                            | No charge      | No charge             | No charge      | No charge      | No charge             |  |  |  |  |

TABLE 8: Data of corrosion tests for the dry films formed from PEGTDMSO and curing agent TDI on the surface of carbon steel alloy specimens in 10% H<sub>2</sub>SO<sub>4</sub> for 20 days

| Period of immersion |                  | Visual inspection for the dry films formed in 10% H <sub>2</sub> SO <sub>4</sub> |                |               |                |          |          |  |  |  |
|---------------------|------------------|----------------------------------------------------------------------------------|----------------|---------------|----------------|----------|----------|--|--|--|
| time (days)         | $\mathbf{Y}_{0}$ | $\mathbf{Y}_1$                                                                   | $\mathbf{Y}_2$ | $Y_3$         | $\mathbf{Y}_4$ | $Y_5$    | $Y_6$    |  |  |  |
| 1                   | no spots         | no spots                                                                         | no spots       | no spots      | no spots       | no spots | no spots |  |  |  |
| 2                   | no spots         | no spots                                                                         | no spots       | no spots      | no spots       | no spots | no spots |  |  |  |
| 3                   | no spots         | no spots                                                                         | no spots       | no spots      | no spots       | no spots | no spots |  |  |  |
| 4                   | no spots         | no spots                                                                         | no spots       | no spots      | no spots       | no spots | no spots |  |  |  |
| 8                   | no spots         | no spots                                                                         | no spots       | no spots      | no spots       | no spots | no spots |  |  |  |
| 12                  | chalk surface    | no spots                                                                         | no spots       | no spots      | no spots       | no spots | no spots |  |  |  |
| 16                  | chalk surface    | chalk surface                                                                    | chalk surface  | no spots      | no spots       | no spots | no spots |  |  |  |
| 20                  | 5 spots          | 3 spots                                                                          | 2 spots        | chalk surface | chalk surface  | no spots | no spots |  |  |  |

CHEMICAL TECHNOLOGY An Indian Journal

Full Paper

|                                                                                      | -          |          |
|--------------------------------------------------------------------------------------|------------|----------|
| TABLE 9: Corrosion tests data of the formed dry films on the surface of carbon steel | alloy spec | imens in |
| sea water for 60 days                                                                |            |          |

| Period time | Visual inspection for the formed dry films |                |                |                |           |           |                |  |  |
|-------------|--------------------------------------------|----------------|----------------|----------------|-----------|-----------|----------------|--|--|
| (days)      | $Y_6$                                      | $\mathbf{Y}_1$ | $\mathbf{Y}_2$ | Y <sub>3</sub> | $Y_4$     | $Y_5$     | Y <sub>6</sub> |  |  |
| 3           | no spots                                   | no spots       | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 6           | no spots                                   | no spots       | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 9           | no spots                                   | no spots       | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 12          | 1-5 spots                                  | no spots       | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 15          | 5-10 spots                                 | no spots       | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 18          | 10-14 spots                                | no spots       | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 21          | middle spots                               | no spots       | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 24          | middle spots                               | 1-4 spots      | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 36          | much spots                                 | low spots      | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 48          | covered spots                              | low spots      | no spots       | no spots       | no spots  | no spots  | no spots       |  |  |
| 60          | covered spots                              | much spots     | 1-5 spots      | 1-3 spots      | 1-3 spots | 1-3 spots | 1-2 spots      |  |  |

 $Y_5$  and  $Y_6$  were not affected. The 1-3 corrosion spots were appeared on the surface of the formed films from formula  $Y_1$ -  $Y_2$  at 20 days. These ratios of corrosion spots were very low and should be neglected, (rust grade 8B ASTM D- 610), so that the formed dry films from formula  $Y_3$ -  $Y_6$  were valid to protect the surface of carbon steel alloy against aggressive acidic media.

## Effect of synthetic sea water (3.5% NaCl) on the formed PEGTDMSO urethane films

The data of the effect of synthetic sea water (3.5% NaCl) on the formed dry PEGTDMSO urethane films for 1440 hr (60 days) were given in TABLE 9. These results were indicated that the films formed from formula  $Y_2-Y_6$  were valid for protecting the surface of carbon steel alloy against aggressive media. Generally, due to the ratio of spots to the total surface area was less than 0.1 %, (rust grade 8B ASTM D- 610), these spots should be neglected.

## CONCLUSION

- The prepared PEGTDMSO purified and confirmed by <sup>1</sup>HNMR, FTIR and GPC.
- PEGTDMSO blended with inorganic additive  $ZnO_2$ , TiO<sub>2</sub>, and silica to form formula  $Y_1 Y_6$ .
- The preparation surface of carbon steel alloy specimens painted by formula Y<sub>0</sub> Y<sub>6</sub>.
- The physical, mechanical and chemical properties for the forming films from formula Y<sub>0</sub> Y<sub>6</sub> recorded and discussed.
- The net results indicating the validity of the formed dry films for protection of carbon steel alloy.

## REFERENCES

- A.M.M.Abd El Rahman, H.M.Abu Alainin, O.M. Abo-Elenien; Egypi.Appl.Sci., 19(8), 196-211 (2004).
- [2] O.M.Abo-Elenien, O.E.Elazabawy, R.M. Aboshahba, M.A.Elsockary; Egypi.Appl.Sci., 19(8), 177-195 (2004).
- [3] O.M.Abo-Elenien, H.M.Abu-Elainin; Egypt.J.Petrol.,9, 13-18 (2000).
- [4] M.Alagar, M.I.Bilal, V.Mohan; British Corrosion J., 34(1), 75-78 (1999).
- [5] S.Claudia, R.Barbel, J.H.Andrew, F.L.Hall, U.Klaus, B.Sellergren; Macromolecules, 35, 79-91 (2002).
- [6] A.Cackovich, D.Perry; Surface Coating International, 10, 495 -501 (2000).
- [7] B.Delamo, R.Romagnoli, V.F.Vetere; Prog.Org.Coat., 33(1), 28-35 (1998).
- [8] A.J.Fream, S.E.Magent; Surf.Coat.Intern., 9, 447-454 (2000).
- [9] H.J.Kim, J.Jang, Y.D.Lee, C.W.Zin; Macromolecules, 35, 311-313 (2002).
- [10] D.B.Macqueen, Y.D.Blum; Surface Coating Intern., 84(B1), 27-33 (2001).
- [11] H.Mayer; Surf.Coat.Intern., 2, 89-93 (1998).
- [12] B.J.Sayaln; Prog.Org.Coatings, 9(2), 165-236 (1981).
- [13] P.S.Sidky, M.G.Hocking; Br.Corr.J., 34(3), 171-183 (1999).
- [14] J.A.Sue, H.H.Troue; Surf.Coat.Technol., 33, 169 (1987).
- [15] S.Tiwari, M.Saxena; Birtish Corrosion Journal, 34(3), 184-191 (1999).
- [16] H.E.Townsend; Corrosion, 54(7), 561-565 (1998).
- [17] N.Uyanik, H.Yalcinkaya, N.Kizilcan; Surf.Coat.Inte. Part B: Coatings Transactions, 84(B4), 243-336 (2001).
- [18] H.Zeh; Surface Coating International, 3, 111-118 (2000).

CHEMICAL TECHNOLOGY An Indian Journal