

Journal of Current Chemical & Pharmaceutical Sciences

J. Curr. Chem. Pharm. Sc.: 2(3), 2012, 133-148 ISSN 2277-2871

SYNTHESIS, STRUCTURAL ELUCIDATION AND ANTIMICROBIAL ACTIVITIES OF SOME ALKYLENE DITHIOPHOSPHATE DERIVATIVES OF MACROCYCLIC COMPLEXES OF Ni (II) HAVING N₂S₂ POTENTIAL DONORS IN 18 TO 24 MEMBERED RINGS

VIVEK G. DAVE and PIYUSH J. VYAS^{*}

Department of Chemistry, Sheth M. N. Science College, Hemchandracharya North Gujarat University, PATAN – 384265 (Guj.) INDIA

(Received : 15.05.2012; Revised : 24.05.2012; Accepted : 27.05.2012)

ABSTRACT

Alkylene dithiophosphate derivatives of macrocyclic complexes of Nickel (II), having N_2S_2 potential donors, of the general formula,

Where mc = macrocyclic ligands and G = CH₃-CH-CH-CH₃, (CH₃)₂-C-C-(CH₃)₂ and (CH₃)₂-C-CH₂-CHhave been synthesized from the reactions of [Ni (mc₁-mc₅)X₂], Where X = Cl⁻, NO₃⁻, or CH₃COO⁻, with ammonium alkylene dithiophosphates in 1 : 2 molar ratios in THF. These complexes have been characterized by elemental analysis, molar conductance, molecular weight determination, IR, ³¹P NMR, electronic spectra, and magnetic measurements. Molecular weight determination of these complexes indicates their monomeric nature. Octahedral structure has been proposed on the basis of ³¹P NMR, electronic spectra, and magnetic measurements. Two sulphur atoms and two nitrogen atoms of the macrocyclic ring coordinate to the central nickel ion in the square planar form, and each dithiophosphate moiety occupies the axial positions binding the central nickel ion in unidentate behavior. Antimicrobial activities of these derivatives have been studied by screening them against fungi, such as *Aspergillus flavus, Fusarium oxysporum, Trichoderma harzianum*, and bacteria, such as *Salmonella typhi* and *Bacillus subtili*. Alkylene dithiophosphate derivatives were found to be more fungitoxic and antibacterial than their corresponding macrocyclic complexes.

Key words: Alkylene dithiophosphates, Macrocyclic complexes, Nickel (II).

INTRODUCTION

Due to importance in biological systems and as a synthetic model for many metalloenzyme reactions¹⁻³, their novel structural features, and unusual magnetic properties, there has been considerable interest in the transition metal chemistry in the mixed ligand compounds during last few years⁴⁻¹⁵. Recently a number of mixed-ligand complexes involving Ni (II) with sulphur-containing ligand have been reported, and

Available online at www.sadgurupublications.com

^{*}Author for correspondence; E-mail: vivekdave22@gmail.com

their structures have been confirmed by single-crystal X-Ray Crystallography¹⁶⁻²⁰. Macrocyclic complexes of both transition and nontransition elements have received considerable interest during the past one and one half decades due to their wide diversity in chemical²¹⁻²⁸ and biological systems²⁹⁻³¹. Macrocyclic complexes having tetraaza³²⁻³⁶, dioxotetraaza³⁷⁻³⁸, tetraoxotetraaza³⁹, tetraoxo octaaza⁴⁰ and trioxotetraaza⁴¹ are well reported. Recently we have reported synthesis, characterization and biocidal screening of some new thioaza macrocyclic complexes of Ni (II)⁴². Inspite of vast innovations in macrocyclic chemistry and tremendous interest in mixed ligand complexes, no macrocyclic complex having mixed ligand system has been reported so far.

Alkylene dithiophosphates has been our area of research for many years⁴³⁻⁵¹. Recently the synthesis, characterization, and antimicrobial aspects of the mixed-ligand macrocyclic complexes of Ni (II) having dialkyldithiophosphate moieties have been reported⁴². In continuation of the above research we hereby report the synthesis characterization and antimicrobial aspects of alkylene dithiophosphate derivatives of macrocyclic complexes of Ni (II), in which two sulphur atoms and two nitrogen atoms of the macrocyclic ring coordinate to the central nickel ion in the square planar form and each dithiophosphate moiety occupy the axial positions binding the central nickel ion in unidentate manner through strong electrostatic attraction.

EXPERIMENTAL

Materials and methods

All of the nickel salts and dicarboxylic acids of Analytical Reagent grade were obtained from S.dfine Chemicals (Mumbai, India) and were used without further purification. *p*-aminothiophenol was used as obtained from Merck (Germany and UK). Solvents were purified and dried by standard methods.

Microanalysis for carbon, hydrogen, nitrogen, and sulphur were determined from Sophisticated Instrumentation Center for Applied Research Testing (SICART), Vallabh Vidyanagar. Nickel and phosphorus were estimated by standard methods⁵². The molecular weights were determined by Rast Camphor method. Infrared data were recorded on a Perkin-Elmer Fourier transform infrared (FTIR) spectrophotometer as KBr pellets. Magnetic data were recorded on Faraday balance. Electronic spectra were recorded on GBC 911 spectrophotometer in the range 380-1000 nm. ³¹P NMR spectra were recorded on 270 MHz spectrometer using CDCl₃ as a solvent and H₃PO₄ as an external standard.

Synthesis of macrocyclic complexes and its derivatives

Macrocyclic complexes were prepared by the methods as reported earlier⁴².

Macrocyclic complex derived from template condensation of malonic acid and p-aminothiophenol in the presence of nickel chloride

A solution of nickel chloride (0.852 g, 0.0035 mmol) in methanol was reacted with *p*-aminothiophenol (0.896 g, 0.0071 mmol) dissolved in methanol. This was followed by the addition of a methanolic solution of malonic acid (0.745 g, 0.0071 mmol). Reaction mixture was refluxed for 10 h at 80°C. The green precipitate obtained on cooling was filtered, washed with methanol, and dried in vacuo.

Macrocyclic complex derived from template condensation of succinic acid and p-aminothiophenol in the presence of nickel chloride

A solution of nickel chloride (1.245 g, 0.0052 mmol) in methanol was reacted with p-aminothiophenol (1.309 g, 0.0104 mmol) dissolved in methanol. This was followed by the addition of a

methanolic solution of succinic acid (1.248 g, 0.0105 mmol). Reaction mixture was refluxed for 10 h at 80°C. The green precipitate obtained on cooling was filtered, washed with methanol, and dried in vacuo.

Alkylene dithiophosphoric acids and their ammonium salts were prepared by the methods as reported earlier⁴⁴. The derivatives of macrocyclic complexes of the following alkylene dithiophosphoric acids have been synthesized.

Butylene dithiophosphoric acid.

(2-Mercapto-2-thiono-4,5 dimethyl 1,2,3-dioxaphospholane)

Tetramethylethylene dithiophosphoric acid.

(2-Mercapto-2-thiono-4,4,5,5-tetremethyl-1,3,2-dioxaphospholane)

Hexylene dithiophosphoric acid.

(2-Mercapto-2-thiono-4,4,6-trimethyl-1,3,2-dioxaphosphorinane)

Synthesis of butylene dithiophosphate derivative of macrocyclic complex obtained from the reaction of ammonium butylene dithiophosphate with the complex derived by the template condensation of succinic acid and p-aminothiophenol in the presence of nickel chloride

Macrocyclic complex mentioned above (0.816 g, 0.0015 mmol) was dissolved in tetrahydro furane (THF) and was reacted with methanolic solution of ammonium butylene dithiophosphate (0.636 g, 0.0031 mmol) in 1 : 2 molar ratio. Reaction mixture was refluxed for ~2 h at 90°C. On cooling the green crystals of

dithiophosphate derivative were separated out, which were filtered through G-3 filtering funnel. This crude product was washed several times with methanol by vigrous shaking in filtration funnel to remove the ammonium chloride formed during the reaction. Product was dried in vacuo and was crystallized with THF/C_2H_5OH mixture.

Synthesis of hexylene dithiophosphate derivative of macrocyclic complex obtained from the reaction of ammonium hexylene dithiophosphate with the complex derived by the template condensation of succinic acid and o-aminothiophenol in the presence of nickel chloride

Macrocyclic complex mentioned above (0.690 g, 0.0013 mmol) was dissolved in THF and was reacted with methanolic solution of ammonium hexylene dithiophosphate (0.613 g, 0.0026 mmol) in 1 : 2 molar ratio. Reaction mixture was refluxed for ~2h at 90°C. On cooling the green crystals of dithiophosphate derivative were separated out, which were filtered through G-3 filtering funnel. This crude product was washed several times with methanol by vigrous shaking in filtration funnel to remove the ammonium chloride formed during the reaction. Product was dried in vacuo and was crystallized by THF/C₂H₅OH mixture. Relevant data for the similar syntheses are given in Table 1.

RESULTS AND DISCUSSION

Macrocyclic complexes of Ni (II) in THF react with methanolic solution of ammonium alkylene dithiophosphate in 1 : 2 molar ratios to afford alkylene dithiophosphate derivatives of macrocyclic Ni(II) complexes in the following manner:

$$[Ni(mc_{1} - mc_{5})X_{2}] + 2NH_{4}S_{2}P \int_{O}^{O}G$$
$$[Ni(mc_{1} - mc_{5})\{S_{2}P \int_{O}^{O}G\}_{2}] + 2NH_{4}X$$

where mc_1 to mc_5 are the macrocyclic complexes derived by the template condensation of *p*-aminothiophenol with dicarboxylic acids in the presence of NiCl₂·6H₂O in methanol,

$$G = CH_3-CH-CH_3$$
, $(CH_3)_2-C-C-(CH_3)_2$, and $(CH_3)_2-C-CH_2-CH_3$ and $X = CI^-$, NO₃ or CH₃COO.

Most of the complexes were prepared starting with chloride salts of macrocyclic complexes. For comparison a few representative compounds have been prepared starting with nitrate and acetate salts of macrocyclic complexes. The reaction starts at room temperature, but for completion of reaction the reaction mixture was refluxed for ~2 h. On cooling the crystals of dithiophosphate derivatives were separated out. Except for THF and dimethysulfoxied (DMSO), these derivatives are insoluble in almost all organic solvents. All derivatives are dull, shining, or dark red in colour and melt with decomposition at high temperature. The molar conductance of 10^{-3} M solution in DMSO lie in the range 3.48-7.14 ohm⁻¹ cm² mol⁻¹, showing that these complexes are nonelectrolyte (Table 2). The molecular weight determinations indicate their monomeric nature (Table 1). The analytical data of these derivatives are given in Table 3.

	TUDAL IL ALADI	A THE TA SAVAID TANA AND LAD TANK TA TAN			
S. No.	Macrocyclic complex [Moleculer formula] (Empirical formula) g (mmol)	Amonium alkylenedithiophosohate g (mmol)	[Product] (Empirical formula) Yield (g)%	M.P. (decomp.) [°] C	M. Wt. Found (Caled.)
1	[Ni(mc1)Cl2] (C18H14N2S2O4NiCl2) 0.816(0.0015)	NH ₄ S ₂ POCH(CH ₃)CH(CH ₃)O) (C ₄ H ₈ S ₂ O ₂ PNH ₄) 0.636(0.0031)	$ \begin{bmatrix} Ni(mc_1) \left\{ S_2 POCH(CH_3)CH(CH_3)O \right\}_2 \\ (C_{26}H_{30}N_2P_2S_6O_8Ni) \\ 1.00(82\%). \end{bmatrix} $	238	824.40 (810.7)
7	[Ni(mc ₁)Cl ₂] (C ₁₈ H ₁₄ N ₂ S ₂ O ₄ NiCl ₂) 0.748(0.0014)	NH452POC(CH3)2C(CH3)2O) (C6H1252O2P.NH4) 0.665(0.0029)	$[Ni(mc_1) \{S_2 POC(CH_3)_2 C(CH_3)_2 O\}_2]$ $(C_{30}H_{38}N_2 P_2 S_6 O_8 Ni)$ $1.08(84\%).$	235	856.7 (864.7)
ę	[Ni(mc ₁)Cl ₂] (C ₁₈ H ₁₄ N ₂ S ₂ O ₄ NiCl ₂) 0.690(0.0013)	NH4S2POC(CH3)2CH2CH(CH3)O (C6H12S2O2P.NH4) 0.636(0.0031)	[Ni(mc ₁){S ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O} ₂] (C ₃₀ H ₃₈ N ₂ P ₂ S ₆ O ₈ Ni) 0.960(82%).	215	845.7 (862.7)
4	[Ni(mc ₂)Cl ₂] (C ₂₀ H ₁₈ N ₂ S ₂ O ₄ NiCl ₂) 0.816(0.0015)	NH4S2POCH(CH3)CH(CH3)O (C4H8S2O2PNH4) 0.636(0.0031)	[Ni(mc ₂) [S ₂ POCH(CH ₃)CH(CH ₃)O] ₂] (C ₂₈ H ₃₄ N ₂ P ₂ S ₆ O ₈ Ni) 1.080(82%).	222	820.5 (834.7)
Ś		NH ₄ S ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O (C ₄ H ₈ S ₂ O ₂ PNH ₄) 0.636(0.0031)	$\begin{bmatrix} Ni(mc_2) \{ S_2 POC(CH_3)_2 C(CH_3)_2 O \}_2 \\ (C_{32}H_{42}N_2 P_2 S_6 O_8 Ni) \\ 1.060(81\%). \end{bmatrix}$	256	887.7 (890.7)
9	$ \begin{bmatrix} Ni(mc_2)Cl_2 \\ (C_{20}H_{18}N_2S_2O_4NiCl_2) \\ 0.680(0.0013) \end{bmatrix} $	NH452POC(CH3)2CH2CH(CH3)O (C4H8S2O2PNH4) 0.636(0.0031)	[Ni(mc ₂) {S ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O}2] (C ₃₂ H ₄₂ N ₂ P2S ₆ O ₈ Ni) 1.112(84%).	232	862.4 (890.7)
٢		NH ₄ S ₂ POCH(CH ₃)CH(CH ₃)O (C ₄ H ₈ S ₂ O ₂ PNH ₄) 0.636(0.0031)	[Ni(mc ₃) {S ₂ POCH(CH ₃)CH(CH ₃)O} ₂] (C ₃₀ H ₃₈ N ₂ P ₂ S ₆ O ₈ Ni) 1.50(84%).	214	902.4 (918.7)
					Cont

Table 1: Reaction of macrocyclic complexes of Ni (II) with ammonium alkylene dithiophosphates.

J. Curr. Chem. Pharm. Sc.: 2(3), 2012

137

. No.	Macrocyclic complex [Moleculer formula] (Empirical formula) g (mmol)	Amonium alkylenedithiophosohate g (mmol)	[Product] (Empirical formula) Yield (g)%	M.P. (decomp.) °C	M. Wt. Found (Caled.)
~	[Ni(mc ₃)Cl ₂] (C ₂₂ H ₂₂ N ₂ S ₂ O ₄ NiCl ₂) 0.740(0.0014)	NH4S2POC(CH3)2C(CH3)2O (C4H8S2O2PNH4) 0.636(0.0031)	$ \begin{bmatrix} Ni(mc_3) \{S_2 POC(CH_3)_2 C(CH_3)_2 O \}_2 \\ (C_{34} H_{46} N_2 P_2 S_6 O_8 Ni) \\ 1.00(82\%). \end{bmatrix} $	210	943.2 (920.7)
6	[Ni(mc ₃)Cl ₂] (C ₂₂ H ₂₂ N ₂ S ₂ O ₄ NiCl ₂) 0.692(0.0013)	NH4S2POC(CH3)2CH2CH(CH3)O (C4H8S2O2PNH4) 0.636(0.0031)	[Ni(mc ₃){S ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O} ₂] (C ₃₄ H ₄₆ N ₂ P ₂ S ₆ O ₈ Ni) 1.098(84%).	202	912.4 (920.7)
0	[Ni(mc ₄)Cl ₂] (C ₁₈ H ₁₄ N ₂ S ₂ O ₄ NiCl ₂) 0.780(0.0014)	$NH_4S_2POCH(CH_3)CH(CH_3)O(C_4H_8S_2O_2PNH_4)$ $(C_4H_8S_2O_2PNH_4)$ 0.636(0.0031)	[Ni(mc ₄) [S ₂ POCH(CH ₃)CH(CH ₃)O} ₂] (C ₃₂ H ₄₂ N ₂ P ₂ S ₆ O ₈ Ni) 1.180(76%).	217	878.8 (992.7)
-	$ \begin{bmatrix} Ni(mc_4)Cl_2 \\ (C_{18}H_{14}N_2S_2O_4NiCl_2) \\ 0.762(0.0014) \end{bmatrix} $	NH4S2POC(CH3)2C(CH3)2O (C4H8S2O2PNH4) 0.636(0.0031)	[Ni(mc4) {52POC(CH3)2C(CH3)2O}2] (C36H50N2P2S6O8Ni) 1.970(82%).	230	967.4 (948.7)
5	[Ni(mc ₄)Cl ₂] (C ₁₈ H ₁₄ N ₂ S ₂ O ₄ NiCl ₂) 0.816(0.0015)	NH4S2POC(CH3)2CH2CH(CH3)O (C4H8S2O2PNH4) 0.636(0.0031)	[Ni(mc4){S2POC(CH3)2CH2CH(CH3)O}2] (C36H50N2P2S6O8Ni) 0.980(78%).	221	938.2 (948.7)
3	$ \begin{bmatrix} Ni(mc_5)cl_2 \\ (C_{18}H_{14}N_2S_2O_4NiCl_2) \\ 0.690(0.0013) \end{bmatrix} $	NH ₄ S ₂ POCH(CH ₃)CH(CH ₃)O (C ₄ H ₈ S ₂ O ₂ P.NH ₄) 0.636(0.0031)	[Ni(mc ₃) [S ₂ POCH(CH ₃)CH(CH ₃)O} ₂] (C ₃₆ H ₃₄ N ₂ P ₂ S ₆ O ₈ Ni) 1.00(83%).	223	920.2 (932.7)
4	[Ni(mc ₅)Cl ₂] (C ₁₈ H ₁₄ N ₂ S ₂ O ₄ NiCl ₂) 0.785(0.0015)	NH452POC(CH3)2.C(CH3)20 (C4H8S202P.NH4) 0.636(0.0031)	[Ni(mc ₅){S ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O} ₂] (C ₄₀ H ₄₂ N ₂ P ₂ S ₆ O ₈ Ni) 1.080(84%).	220	984.7 (990.3)
S	[Ni(mc ₅)Cl ₂] (C ₁₈ H ₁₄ N ₂ S ₂ O ₄ NiCl ₂) 0.694(0.0013)	NH ₄ S ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O (C ₄ H ₈ S ₂ O ₂ P.NH ₄) 0.636(0.0031)	[Ni(mc ₅){S ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O} ₂] (C ₄₀ H ₄₂ N ₂ P ₂ S ₆ O ₈ Ni) 1.044(80%).	230	982.6 (990.3)

V. G. Dave and P. J. Vyas: Synthesis, Structural Elucidation and....

Infrared spectra

Characteristic IR absorption frequencies of these derivatives are given in Table 4. As observed in the macrocyclic complexes, the four bands in the regions 1690-1650 (s), 1587-1555 (m), 1278-1252 (s), and 690-635 (w) cm⁻¹ have been ascribed to amide I, amide II, amide III and amide IV in plane deformation vibrations, respectively⁵³. A broad band present in the region 3278-3150 cm⁻¹ has been assigned to v (NH) vibration of the secondary amino group. These bands do not show any significant change from their parent macrocyclic complexes.⁴² Two bands present in the regions 1070-1040 and 890-855 cm⁻¹ may be assigned to (P)-O-C and P-O-(C) stretching vibrations, respectively.⁵⁴ The bands present between 1000-950 cm⁻¹ may be attributed to the ring vibrations of dioxaphospholanes and dioxaphosphorinanes^{55,56} respectively, which are probably coupled with C-C staching vibrations. A weak band present in the region 710-670 cm⁻¹, which also appears in ammonium alkylene dithiophosphates around the same region, is attributed to free P = S moiety. This indicates the unidentate behavior of dithiophosphate moieties^{57,58}. The presence of sharp bands in the region 460-410 cm⁻¹ and 360-315 cm⁻¹ have been assigned to v (Ni-N) and v (Ni-S) vibrations, respectively⁴⁶.

³¹P NMR

Due to paramagnetic nature of Ni (II), in octahedral geometry the ¹H NMR of its complexes can't be observed as easily as can the diamagnetic Ni (II) complexes. We reported the ¹H NMR of some paramagnetic Ni (II) complexes earlier^{45,46}. During the present investigations it was not possible to obtain the ¹H NMR spectra. ³¹P NMR spectra of a few representative compounds could be recorded. The spectra were recorded on 270 MHz spectrometer using CDCl₃ as a solvent and H₃PO₄ as an external standard. As we reported earlier^{45,46}, the position of chemical shift in ³¹P is not influenced by the paramagnetic nature of nickel ion. The values of chemical shifts of the newly synthesized compounds are reported in Table 2. The chemical shift values do not show any significant change from their parent alkylene dithiophosphoric acids. This again indicates the monodentate nature of alkylene dithiophosphate moieties attached to the central nickel ion^{57,58}.

S. No.	Compound	Magnetic Moment µ _{eff}	Elect spe λ _{max}	ronic ctra (nm)	Conductivity	³¹ P NMR Chemical Shift (ð)
		(B.M.)	v ₂	v ₃		51111 (0)
1	$[Ni(mc_1) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{26}H_{30}N_2P_2S_6O_8Ni)$	3.15	660	425	3.47	96.80 (95.49)
2	$[Ni(mc_1) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8Ni)$	3.21	665	400	6.21	-
3	$[Ni(mc_1) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8Ni)$	3.20	650	410	4.52	-

Table	2:	Physico-chemical	properties	of	the	alkylene	dithiophosphates	derivatives	of	macrocyclic
		complexes of Ni (I	I)							

4	$[Ni(mc_2) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{28}H_{34}N_2P_2S_6O_8Ni)$	3.06	650	415	7.15	-
5	$[Ni(mc_2) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{32}H_{42}N_2P_2S_6O_8Ni)$	3.14	660	400	6.82	98.24 (93.07)
6	$[Ni(mc_2) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{32}H_{42}N_2P_2S_6O_8Ni)$	3.08	680	410	6.40	-
7	$[Ni(mc_3) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8Ni)$	3.20	655	400	5.75	-
8	$[Ni(mc_3) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{34}H_{46}N_2P_2S_6O_8Ni)$	2.97	660	410	5.15	-
9	$[Ni(mc_3) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{34}H_{46}N_2P_2S_6O_8Ni)$	3.03	680	400	7.42	86.12 (73.20)
10	$[Ni(mc_4) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{32}H_{42}N_2P_2S_6O_8Ni)$	3.15	680	410	5.15	-
11	$[Ni(mc_4) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{36}H_{50}N_2P_2S_6O_8Ni)$	3.21	665	420	6.52	98.15 (93.07)
12	$[Ni(mc_4) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{36}H_{50}N_2P_2S_6O_8Ni)$	3.05	670	400	5.41	-
13	$[Ni(mc_5) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{36}H_{34}N_2P_2S_6O_8Ni)$	3.20	760	420	4.21	98.24 (95.49)
14	$[Ni(mc_5) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{40}H_{42}N_2P_2S_6O_8Ni)$	2.97	655	415	4.32	-
15	$[Ni(mc_5) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{40}H_{42}N_2P_2S_6O_8Ni)$	2.98	670	400	5.75	84.78 (73.20)

Values of the ³¹P chemical shifts of parent alkylene dithiophosphoric acids are given in parenthesis

S.	Compound		Found (calcd.)						
No.	Compound	С	Η	Ν	Р	S	Ni		
1	$[Ni(mc_1) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{26}H_{30}N_2P_2S_6O_8Ni)$	38.21 (38.48)	3.22 (3.70)	3.54 (3.45)	7.55 (7.76)	23.66 (23.68)	7.54 (7.24)		
2	$[Ni(mc_1) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8Ni)$	41.20 (41.53)	4.17 (4.38)	3.76 (3.23)	7.54 (7.15)	22.65 (22.15)	6.43 (6.77)		
3	$[Ni(mc_1) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8Ni)$	41.34 (41.53)	4.02 (4.38)	3.25 (3.23)	7.42 (7.15)	23.14 (22.15)	6.45 (6.77)		
4	$[Ni(mc_2) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{28}H_{34}N_2P_2S_6O_8Ni)$	40.54 (40.06)	4.73 (4.05)	3.07 (3.33)	7.52 (7.39)	22.72 (22.89)	6.39 (7.00)		
5	$[Ni(mc_2) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{32}H_{42}N_2P_2S_6O_8Ni)$	42.25 (42.92)	4.85 (4.69)	3.51 (3.13)	7.35 (6.93)	21.74 (21.46)	6.85 (6.56)		
6	$[Ni(mc_{2})\{S_{2}POC(CH_{3})_{2}CH_{2}CH(CH_{3})O\}_{2}] \\ (C_{32}H_{42}N_{2}P_{2}S_{6}O_{8}Ni)$	42.66 (42.92)	4.26 (4.69)	3.68 (3.13)	6.45 (6.93)	21.66 (21.46)	6.61 (6.56)		
7	$[Ni(mc_3) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8Ni)$	41.33 (41.53)	4.25 (4.38)	3.65 (3.23)	7.48 (7.15)	21.75 (22.15)	7.22 (6.77)		
8	$[Ni(mc_3) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{34}H_{46}N_2P_2S_6O_8Ni)$	44.65 (44.22)	4.86 (4.99)	3.76 (3.03)	6.11 (6.72)	20.56 (20.81)	6.39 (6.36)		
9	$[Ni(mc_3)\{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{34}H_{46}N_2P_2S_6O_8Ni)$	44.35 (44.22)	4.31 (4.99)	2.67 (3.03)	6.38 (6.72)	20.54 (20.81)	6.06 (6.36)		
10	$[Ni(mc_4) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{32}H_{342}N_2P_2S_6O_8Ni)$	42.33 (42.92)	4.36 (4.69)	3.55 (3.13)	6.50 (6.93)	21.80 (21.46)	6.80 (6.56)		
11	$[Ni(mc_4) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{36}H_{50}N_2P_2S_6O_8Ni)$	45.75 (45.44)	5.30 (5.26)	2.40 (2.95)	6.50 (6.52)	21.55 (20.20)	6.42 (6.17)		
12	$[Ni(mc_4) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{36}H_{50}N_2P_2S_6O_8Ni)$	45.76 (45.44)	5.32 (5.26)	2.45 (2.95)	6.53 (6.52)	21.50 (20.20)	6.44 (6.17)		
13	$[Ni(mc_{5})\{S_{2}POCH(CH_{3})CH(CH_{3})O\}_{2}] \\ (C_{36}H_{34}N_{2}P_{2}S_{6}O_{8}Ni)$	46.98 (46.22)	3.45 (3.64)	3.52 (3.00)	7.20 (6.63)	21.55 (20.54)	6.20 (6.28)		
14	$[Ni(mc_5) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{40}H_{42}N_2P_2S_6O_8Ni)$	48.60 (48.45)	4.90 (4.24)	3.55 (2.83)	6.08 (6.25)	19.40 (19.38)	5.65 (5.93)		
15	$[Ni(mc_5) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{40}H_{42}N_2P_2S_6O_8Ni)$	48.22 (48.45)	4.54 (4.24)	2.32 (2.83)	6.82 (6.25)	19.47 (19.38)	5.09 (5.93)		

Table 3: Analytical data of the alkylene dithiophosphates derivatives of macrocyclic complexes of Ni (II)

	Table 4: IR Spectral Dat	ta of the /	Alkylene I	Dithiophos	phates de	rivatives o	of Macroo	syclic Co	mplexes of	(II) (II)			
S. No.	[Molicular formula] (Empirical formula)	Amide- I	Amide- II	Amide- III	Amide- IV	v(N-H)	(P)-O- C	P-O- (C)	Ring vibration	S=4	P-S	(Ni-N)	(S-IN)
1	[Ni(mc1) {S2POCH(CH3)CH(CH3)O}2] (C26H30N2P2S6O8Ni)	1668m	1562m	1260s	650w	3190w	1040m	865m	850s	670s	560w	420s	326w
7	T [Ni(mc1){S2POC(CH3)2C(CH3)2O}2] (C30H38N2P2S608Ni)	1670s	1555m	1274s	648w	3200w	1045m	880m	865s	700s	540	456s	318w
S	[Ni(mc ₁){S ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)0} ₂] (C ₃₀ H ₃₈ N ₂ P ₂ S ₆ O ₈ Ni)	1650s	1558m	1268s	656w	3258w	1058m	890m	855s	680s	550	475s	348w
4	[Ni(mc ₂) {S ₂ POCH(CH ₃)CH(CH ₃)O} ₂] (C ₂₈ H ₃₄ N ₂ P ₂ S ₆ O ₈ Ni)	1690s	1559m	1252m	636w	3240m	1062m	870m	850s	685s	560	418s	364w
Ś	[Ni(mc ₂){S ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O} ₂] (C ₃₂ H ₄₂ N ₂ P ₂ S ₆ O ₈ Ni)	1650m	1560m	1250m	688w	3238m	1070m	860m	870s	700s	545	428s	318w
9	[Ni(mc ₂){S ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O} ₂] (C ₃₂ H ₄₂ N ₂ P ₂ S ₆ O ₈ Ni)	1680m	1523m	1262s	695w	3190m	1050m	890m	950s	710s	555	460s	348w
r	[Ni(mc ₃) {S ₂ POCH(CH ₃)CH(CH ₃)O} ₂] (C ₃₀ H ₃₈ N ₂ P ₂ S ₆ O ₈ Ni)	1690m	1575m	1252m	605w	3278w	1065m	870m	870s	670s	550	422s	345w
												-	Cont

141

No. V	[Molicular formula] (Empirical formula)	Amide- I	Amide- II	Amide- III	Amide- IV	v (N-H)	(P)-O- C	P-0-(C)	Ring vibration	P=S	P-S	(Ni-N)	(S-IN)
8	[Ni(mc ₃){S ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O} ₂] (C ₃₄ H ₄₆ N ₂ P ₂ S ₆ O ₈ Ni)	1682s	1555m	1259m	658w	3145m	1040m	880m	880s	690s	560w	458s	377w
6	[Ni(mc ₃){S ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O} ₂] (C ₃₄ H ₄₆ N ₂ P ₂ S ₆ O ₈ Ni)	1689s	1587m	1256m	657w	3162m	1075m	890m	865s	700s	545w	483s	320w
10	[Ni(mc4) {S2POCH(CH3)CH(CH3)O}2] (C32H42N2P2S6O8Ni)	1682m	1555m	1260s	647w	168w	1070m	878m	970s	670s	560w	420s	335w
11	[Ni(mc ₄){S ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O} ₂] (C ₃₆ H ₃₀ N ₂ P ₂ S ₆ O ₈ Ni)	1690m	1562m	1274s	632w	3200w	1062m	860m	865s	680s	540w	430s	340w
12	[Ni(mc4) {S2POC(CH3)2CH2CH(CH3)O}2] (C36H30N2P2S6O8Ni)	1660m	1537m	1268m	640w	3210w	1055m	850m	855s	700s	550w	460s	318w
13	[Ni(mc ₅) {S ₂ POCH(CH ₃)CH(CH ₃)0}2] (C ₃₆ H ₃₄ N ₂ P ₂ S ₆ O ₈ Ni)	1673m	1568m	1252s	648w	3208w	1070m	890m	850s	690s	560w	460s	350w
14	T [Ni(mc ₅){S ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O} ₂] (C ₄₂ H ₄₀ N ₂ P ₂ S ₆ O ₈ Ni)	1685s	1570m	1252s	650w	3200m	1050m	870m	960s	700s	555w	460s	348w
15	[Ni(mc ₅){S ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O} ₂] (C ₄₀ H ₄₂ N ₂ P ₂ S ₆ O ₈ Ni)	1690s	1568m	1270s	660w	3208m	1055m	850m	850s	670s	540w	418s	340w

Electronic spectra

Electronic spectra were recorded on GBC 911 spectrophotometer in the range of 380-1000 nm. Only two bands, v_2 and v_3 , were observed at around 630-685 and 390-440 nm, this may be attributed to the $3A_2g \rightarrow 3T_1g$ (F) and $3A_2g \rightarrow 3T_1g$ (P) transitions, respectively. These transitions indicate the six coordination of central nickel atom.⁵⁹ Data are given in Table 2.

Magnetic susceptibility

The magnetic moments of the dithiophosphate derivatives are given in Table 2. The magnetic susceptibility was measured at Faraday balance using $Hg[Co(CNS)_4]$ as a calibrant. Pascal constants were used for diamagnetic corrections. The complexes show magnetic moment values of 2.98-3.20 B.M. at room temperature, which correspond to the two unpaired electrons expected for Ni (II) complexes⁶⁰.

Structural information

The above spectral and magnetic data indicate the following octahedral geometry (Fig. 1 and 2) for the above derivatives in which two sulpher atoms and two nitrogen atoms of the macrocyclic ring coordinate to the central nickel ion in the square planar form, and each dithiophosphate moiety occupies the axial position, binding the central nickel ion in unidentate manner through strong electrostatic attraction.

Where n = 1, 2, 3 or 4

Fig. 1: Dithiophosphate derivatives of macrocyclic complexes of Ni (II) derived by the template condensation of p-aminothiophenol with malonic, succinic, glutaric or adipic acid

Fig. 2: Dithiophosphate derivatives of macrocyclic complexes of Ni (II) derived by the template condensation of p-aminothiophenol with pthalic acid

Antimicrobial activity

Antimicrobial activities of dicarboxylic acids, nickel salts and the parent macrocyclic complexes (mc_1 to mc_5) were reported earlier by Bhasin and Panchal⁴² For the sake of comparison the antimicrobial activities

of *p*-aminothiophenol, dicarboxylic acids, nickel salts, their macrocyclic complexes (mc_1 to mc_5) and of butylene, pinacoline (tetramethylethylene) and hexylene dithiophosphoric acids are mentioned in Tables 5 and 6.

Antifungal activities and antibacterial activities of alkylene dithiophosphate derivatives are shown in bold. However, the activity of parent macrocyclic complexes is mentioned in the parenthesis. Like their parent macrocyclic complexes, the antifungal activities of alkylene dithiophosphate derivatives were tested against three fungi, namely *Aspergillus flavus*, *Fusarium oxysporum* and *Trichoderma harzianum*. The screening data for the average percentage inhibition of the fungi at 100, 125 and 200 ppm concentrations are given in Table 5.

The values obtained suggest that alkylene dithiophosphate derivatives of macrocyclic complexes are more fungitoxic than their parent macrocyclic complexes, as well as alkylene dithiophosphoric acids. Furthermore, the data also indicate that with the increase in concentration the fungitoxicity also increases. The antibacterial activity against two bacterias, namely *S. typhi* and *B. subtili*, were tested by inhibition zone technique⁶¹. The values obtained are presented in Table 6. The values suggest that alkylene dithiophosphate derivatives of macrocyclic complexes are found to be more antibacterial than their parent macrocyclic complexes (mc₁ to mc₅). of course, the dithiophosphate moieties behave as a monodentate in all the derivatives, but substitution of anions (Cl⁻, NO₃⁻ and CH₃COO⁻) by the dithiophosphate moieties may reduce the polarity of the central atom by the partial sharing of its positive charge.

~		As	pergill	lus	Fu	ısariur	nm	Tri	choder	ma
S. No	Compound		flavus		ox	yspori	ım	ha	rzianu	m
110.		100	125	200	100	125	200	100	125	200
1	p-Aminothiophenol	40	48	52	36	40	43	39	42	45
2	NiCl ₂ .6H ₂ O	21	30	42	24	32	38	23	34	42
3	Ni(NO ₃) ₂ .6H ₂ O	24	32	40	24	29	42	26	30	37
4	Ni(CH ₃ COO) ₂ .4H ₂ O	23	29	40	28	36	41	24	32	40
5	HOOCCH ₂ COOH	18	20	24	20	24	28	24	28	30
6	HOOC(CH ₂) ₂ COOH	20	23	27	21	24	26	25	28	32
7	HOOC(CH ₂) ₃ COOH	21	24	28	19	21	24	20	23	27
8	HOOC(CH ₂) ₄ COOH	20	24	27	21	24	27	23	25	28
9	HS ₂ POCH(CH ₃)CH(CH ₃)O	60	66	62	63	65	71	62	66	72
10	HS ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O	62	68	64	67	68	70	64	68	71
11	HS ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O	62	66	66	65	70	73	63	67	71
12	$[Ni(mc_1) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{26}H_{30}N_2P_2S_6O_8.Ni)$	76 (54)	68 (57)	82 (61)	64 (54)	84 (58)	85 (64)	84 (58)	85 (62)	85 (70)

Table 5: Antifungal activity of alkylene dithiophosphate derivatives of macrocyclic complexes of Ni (II), average % of inhibition after 72 h at 30°C ± 2 (conc. in ppm)

S. No.	Compound	As	spergill flavus	lus	Fi ox	ısariun ysporu	ım ım	Tri ha	choder Irziani	rma ım
_		100	125	200	100	125	200	100	125	200
13	$[Ni(mc_1)] \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8.Ni)$	74	74	80	75	88	84	79	88	86
14	$[Ni(mc_1) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8.Ni)$	76	74	81	76	80	83	78	81	84
15	$[Ni(mc_2) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{28}H_{34}N_2P_2S_6O_8.Ni)$	78 (53)	78 (57)	84 (67)	73 (52)	85 (57)	83 (62)	84 (53)	84 (59)	87 (64)
16	$[Ni(mc_2) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{32}H_{42}N_2P_2S_6O_8.Ni)$	75	74	86	74	87	85	85	84	86
17	$[Ni(mc_2) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{32}H_{42}N_2P_2S_6O_8.Ni)$	74	77	80	78	83	86	81	85	84
18	$[Ni(mc_3) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8.Ni)$	77 (42)	78 (48)	85 (55)	74 (47)	83 (52)	87 (57)	89 (49)	85 (50)	83 (61)
19	$[Ni(mc_3) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{34}H_{46}N_2P_2S_6O_8.Ni)$	78	77	85	73	86	85	80	84	84
20	$[Ni(mc_3) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{34}H_{46}N_2P_2S_6O_8.Ni)$	75	78	83	78	81	85	84	86	86
21	$[Ni(mc_4) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{32}H_{42}N_2P_2S_6O_8.Ni)$	73 (51)	77 (58)	80 (63)	79 (52)	80 (55)	83 (61)	84 (49)	86 (53)	86 (60)
22	$[Ni(mc_4) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{36}H_{50}N_2P_2S_6O_8.Ni)$	73	76	85	73	82	87	85	87	86
23	$[Ni(mc_4) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{36}H_{50}N_2P_2S_6O_8.Ni)$	74	77	80	78	81	85	81	84	87
24	$[Ni(mc_{5}) \{S_{2}POCH(CH_{3})CH(CH_{3})O\}_{2}] \\ (C_{36}H_{34}N_{2}P_{2}S_{6}O_{8}.Ni)$	72 (49)	76 (54)	80 (59)	77 (49)	82 (55)	84 (60)	84 (59)	86 (63)	88 (68)
25	$[Ni(mc_5) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{40}H_{42}N_2P_2S_6O_8.Ni)$	77	78	84	74	84	84	81	87	87
26	$[Ni(mc_5) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2]$ $(C_{40}H_{42}N_2P_2S_6O_8.Ni)$	74	77	81	76	80	84	80	84	86

Antifungal activity of the parent macrocyclic complexes (average of Cl⁻, NO₃⁻, CH₃COO⁻) are shown in parenthesis.

		B. s	ubtili	<i>S. t</i>	yphi
S. No.	Compound	500	1000	500	1000
1	Streptomycin (standerd)	17	20	19	20
2	NiCl ₂ .6H ₂ O	11	12	11	14
3	Ni(NO ₃) ₂ .6H ₂ O	12	15	12	15
4	Ni(CH ₃ COO) ₂ .4H ₂ O	10	14	9	16
5	<i>p</i> -aminothiophenol	15	18	12	14
6	HOOC CH ₂ COOH	5	8	6	9
7	HOOC (CH ₂) ₂ COOH	8	10	9	12
8	HOOC (CH ₂) ₃ COOH	66	5	7	8
9	HOOC (CH ₂) ₄ COOH	7	9	6	9
10	HOOC (C ₆ H ₄) COOH	8	12	9	12
11	HS ₂ POCH(CH ₃)CH(CH ₃)O	17	22	17	18
12	HS ₂ POC(CH ₃) ₂ C(CH ₃) ₂ O	18	21	20	24
13	HS ₂ POC(CH ₃) ₂ CH ₂ CH(CH ₃)O	18	23	20	25
14	$[Ni(mc_1) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{26}H_{30}N_2P_2S_6O_8.Ni)$	21	22	21	26
15	$[Ni(mc_1)] \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8.Ni)$	22	25	21	24
16	$[Ni(mc_1) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8.Ni)$	24	27	24	29
17	$[Ni(mc_2) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{28}H_{34}N_2P_2S_6O_8.Ni)$	25	28	25	29
18	$[Ni(mc_2) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{32}H_{42}N_2P_2S_6O_8.Ni)$	24	27	23	28
19	$[Ni(mc_{2})\{S_{2}POC(CH_{3})_{2}CH_{2}CH(CH_{3})O\}_{2}] \\ (C_{32}H_{42}N_{2}P_{2}S_{6}O_{8}.Ni)$	23	25	26	28
20	$[Ni(mc_3) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{30}H_{38}N_2P_2S_6O_8.Ni)$	26	25	27	28

Table 6: Antibacterial activity of alkylene dithiophosphate derivatives of macrocyclic complexes of Ni (II), percentage growth inhibition after 24 h at 30°C ± 2 (conc. in ppm)

S. No.	Commente	B . st	ubtili	<i>S. t</i>	yphi
	Compound	500	1000	500	1000
21	$[Ni(mc_3) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{34}H_{46}N_2P_2S_6O_8.Ni)$	23	25	22	28
22	$[Ni(mc_3) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{34}H_{46}N_2P_2S_6O_8.Ni)$	24	24	25	28
23	$[Ni(mc_4) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{32}H_{42}N_2P_2S_6O_8.Ni)$	20	22	20	24
24	$[Ni(mc_4) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{36}H_{50}N_2P_2S_6O_8.Ni)$	22	23	21	22
25	$[Ni(mc_4) \{S_2POC(CH_3)_2CH_2CH(CH_3)O\}_2] \\ (C_{36}H_{50}N_2P_2S_6O_8.Ni)$	22	27	20	21
26	$[Ni(mc_5) \{S_2POCH(CH_3)CH(CH_3)O\}_2] \\ (C_{36}H_{34}N_2P_2S_6O_8.Ni)$	27	22	28	24
27	$[Ni(mc_5) \{S_2POC(CH_3)_2C(CH_3)_2O\}_2] \\ (C_{40}H_{42}N_2P_2S_6O_8.Ni)$	25	24	27	25
28	$[Ni(mc_5) \{S_2 POC(CH_3)_2 CH_2 CH(CH_3)O\}_2] \\ (C_{40}H_{42}N_2P_2S_6O_8.Ni)$	23	22	22	26

Antibacterial activity of the parent macrocyclic complexes (average of Cl⁻, NO₃⁻, CH₃COO⁻) are shown in parenthesis.

REFERENCES

- 1. M. Sabat, K. A. Satyashur and M. Sundaralingam, J. Am. Chem. Soc., 105, 978 (1983).
- 2. H. Sigel, B. E. Fisher and S. Farkas, Inorg. Chem., 22, 925 (1983).
- 3. P. R. Reddy and A. M. Reddy, Indian J. Chem., 41, 2083 (2002).
- 4. N. Singh, R. N. Patel and K. K. Sukla, Indian J. Chem., 42, 1883 (2003).
- 5. B. P. Baranwal, T. Gupta and A. K. Singh, Indian J. Chem., 42, 1905 (2003).
- 6. M. S. Nair and M. A. Neelakantan, Indian J. Chem., 41, 2088 (2002).
- 7. D. A. Tocher, M. G. B. Drew, S. Chowdhury, P. Purkayastha and D. Datta, Indian J. Chem., **42**, 484 (2003).
- 8. K. K. Kamar, A. Saha, S. Goswami and S. Peng, Indian J. Chem., 40, 1229 (2001).
- 9. M. S. Nair and M. A. Neelakantan, Indian J. Chem., 38, 575 (1999).
- 10. M. S. Nair and M. A. Neelakantan, Indian J. Chem., 39, 373 (2000).
- 11. M. S. Nair and M. A. Neelakantan, Indian J. Chem., 39, 394 (2000).

- 12. N. Singh and S. Gupta, Indian J. Chem., 41, 771 (2002).
- 13. M. Fujita and K. Ogura, Bull. Chem. Soc. Jpn., 69, 1471 (1996).
- 14. N. Rajendiran, K. Ramalingam and R. Thiruneelakandan, Indian J. Chem., 40, 1101 (2001).
- 15. K. Ramalingam, G. Aravamudan and V. Venkatchalam, Bull. Chem. Soc. Jpn., 66, 1554 (1993).
- 16. V. Venkatachalam, K. Ramalingam, T. C. W. Mak and L. Bao-Sheng, Polyhedron, 15, 1295 (1996).
- 17. V. Venkatachalam, K. Ramalingam, G. Bocelli and A. Cantoni, Inorg. Chim. Acta., 49, 257 (1997).
- R. Akilan, K. Sivakumar, V. Venkatachalam, K. Ramalingam, K. Chinnakali and H. K. Fun, Acta. Crystallogr., 51, 368 (1995).
- 19. V. Venkatachalam, K. Ramalingam, R. Akilan, K. Sivakumar, K. Chinnakali and H. K. Fun, Polyhedron, **15**, 1289 (1996).
- A. Manohar, V. Venkatachalam, K. Ramalingam, V. Casellato and R. Graziani, Polyhedron, 16, 1971 (1997).
- 21. R. George, O. Khan and O. Guilliou, Phys. Rev. B., 49, 3235 (1994).
- 22. A. Bencini, C. Benelli, A. Caneschi, R. L. Carlin, A. Dei and D. Gatteschi, J. Am. Chem. Soc., 107, 8128 (1995).
- 23. S. W. Keller, V. A. Casson, D. Sandford, F. Stenzel, A. M. Stacy, G. H. Kwei and M. A. Franco, J. Am. Chem. Soc., **116**, 8070 (1994).
- D. L. Nelson, M. S. Willingham and F. T. George, Chemistry of High Temperature Superconductors ACS Symposium Series, No. 351, J. Am. Chem. Soc., Washington, DC (1987).
- Z. J. Zhong, H. Okawa, N. Matsumoto, H. Sakiyama and S. Kida, J. Chem. Soc. Dalton Trans., 497 (1991).
- 26. Z. J. Zhong, N. Matsumoto, H. Okawa and S. Kida, Inorg. Chem., 30, 436 (1991).
- H. Tamaki, Z. J. Zhong, N. Matsumoto, S. Kida, M. Koikwa, N. Achiva, Y. Hashimoto and H. Okawa, J. Am. Chem. Soc., 114, 6974 (1992).
- 28. H. Tsubuke, T. Yoden, T. Iwachido and M. Zenki, J. Chem. Soc. Chem. Comm., 1069 (1991).
- 29. S. Wherland and H. B. Gray, Biological Aspects of Inorganic Chemistry, Wiley Eastern, New York (1977) p. 289.
- 30. S. Wherland and H. B. Gray, Proc. Natl. Acad. Sci., USA, 73, 2950 (1976).
- 31. D. Cummins and H. B. Gray, J. Am. Chem. Soc., 99, 5158 (1977).
- 32. V. A. Jadhar and R. D. Advant, J. Ind. Chem. Soc., 71, 221 (1994).
- 33. N. C. Patra, A. K. Rout, U. Bhattacharya, P. K. Pujapanda and B. Sahoo, Indian J. Chem., **30A**, 225 (1991).
- 34. M. B. H. Howlader, M. S. Islam and M. R. Karim, Indian J. Chem., **39A**, 407 (2000).
- 35. A. Bansal and R. V. Singh, Indian J. Chem., 38A, 1145 (1999).
- 36. A. Chaudhary, R. V. Singh and A. Phor, Indian J. Chem., 41A, 2536 (2002).
- 37. Z. Shourong, L. Huakuan, X. Jingchun and C. Yunti, Polyhedron, 13, 759 (1994).
- 38. D. Christodoulou, M. G. Kanatzidis and D. Coucouvanis, Inorg. Chem., 29, 191 (1990).

- 39. Z. A. Siddiqi and V. J. Mathew, Polyhedron, 13, 799 (1994).
- 40. W. E. Keyes, J. B. R. Dunn and T. M. Loehr, J. Am. Chem. Soc., 99, 5427 (1977).
- 41. R. Chandra, D. Jain, R. Singh and R. M. Singh, Synth. React. Inorg. Met. Org. Chem., 23, 229 (1993).
- 42. C. P. Bhasin and D. G. Panchal, Synth. React. Inorg. Met. Org. (in Press).
- 43. H. P. S. Chauhan, C. P. Bhasin, G. Srivastava and R. C. Mehrotra, Phosphorus and Sulfur, 15, 99 (1983).
- 44. C. P. Bhasin, G. Srivastava and R. C. Mehrotra, Inorg. Chim. Acta., 77, 131 (1983)
- 45. C. P. Bhasin, G. Srivastava and R. C. Mehrotra, Inorg. Chim. Acta., 128, 69 (1987).
- 46. C. P. Bhasin, G. Srivastava and R. C. Mehrotra, Indian J. Chem., 26, 834 (1987).
- 47. C. P. Bhasin, G. Srivastava and R. C. Mehrotra, Inorg. Chim. Acta., 131, 195 (1987).
- 48. C. P. Bhasin, G. Srivastava and R. C. Mehrotra, Inorg. Chim. Acta., 144, 157 (1988).
- 49. C. P. Bhasin, R. Bohra, G. Srivastava, R. C. Mehrotra and P. B. Hitchcock, Inorg. Chim. Acta., 164, 11 (1989).
- 50. C. P. Bhasin, R. S. Dave and K. A. Parmar, J. Ind. Counc. Chem., 2, 26 (2001).
- 51. C. P. Bhasin, R. S. Dave and K. A. Parmar, J. Ind. Counc. Chem., 2, 52 (2001).
- 52. A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, 5th Ed., Longman, London (1978).
- 53. M. Shakir and S. P. Varkey, Polyhedron, 14, 1117 (1995).
- 54. D. E. C. Corbridge, M. Grayson and E. F. Griffith (Eds.), Topics in Phosphorous Chemistry, Inter Science, New York (1969) p. 235.
- 55. J. Cason, W. N. Baxter and W. Deacetis, J. Org. Chem., 24, 247 (1959).
- 56. R. A. Y. Jones and A. R. Katritzky, J. Chem. Soc., 4376 (1960).
- 57. H. P. S. Chauhan, Coord. Chem. Rev., 173, 1 (1998).
- 58. H. P. S. Chauhan, The Chemistry an Applications of Alkoxy, Aryloxy and Applied Derivatives of Elements, R.B. S. A. Publishers, Jaipur (2003) p. 339.
- 59. A. B. P. Lever, Inorganic Electronic Specroscopic, Elsevier Science Publisher, Amsterdam (1984).
- 60. S. E. Livingstone and A. W. Mihkelson, Inorg. Chem., 9, 2545 (1970).
- 61. H. H. Thornberry, Phytopathology, 40, 419 (1950).