

SYNTHESIS OF SUBSTITUTED NITRO-CHALCONES AND 3, 5-DIARYL-NITRO- Δ^2 -PYRAZOLINES

APARNA S. DIGHADE

Department of Chemistry, R. D. I. K. and N. K. D. College, BADNERA (M.S.) INDIA

ABSTRACT

Five different chalcones (Ia) to (If) were synthesized by condensing 2-hydroxy-3-nitro-5-methyl acetophenone with six different aromatic aldehydes in ethanol using NaOH. These chalcones were cyclized with 2, 4-dintrophenylhydrazine in ethanol yielding (IIa) to (IIf). The synthesized compounds were characterized by IR and NMR spectral analysis.

Key words: Nitrochalcones, Pyrazolines.

INTRODUCTION

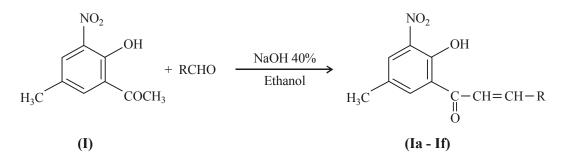
Chalcones are synthesized by condensation of 2-hydroxyacetophenone with aromatic aldehydes in presence of acidic¹ or basic² media. Chalcones show amoebicidal and antimicrobial activities³. Since pyrazolines have antibacterial, antifungal and insecticidal activity⁴⁻⁷, these are effective in killing houseflies on contact⁸. Pyrazolines have microbial activity also⁹. Some workers studied biological evalution of some novel pyrazolines¹⁰. Pyrazolines show antimicrobial activity in quinoline based-2-pyrazolines¹¹.

EXPERIMENTAL

Melting points of all synthesized compounds were determined in open capillary tube and are uncorrected. The purity of compounds were checked by TLC using silica G. I. R. spectra were recorded on Perkin-Elmer-841 spectrometer (cm⁻¹) in KBr disc and NMR (Brucker 300 MHz) using DMSO as solvent.

Synthesis of 2-hydroxy-3-nitro-5-methyl-acetophenone (I)

p-Cresyl acetate was prepared from p-cresol by known method. Then by Fries


*Author for correspondence

migration, 2-hydroxy-5-methyl acetophenone was obtained, which on nitration gives 2-hydroxy-3-nitro-5-methyl acetophenone.

Synthesis of substituted 2-hydroxy-3-nitro-5-methyl chalcones (Ia – If)

Compounds (Ia–If) were synthesized from 2-hydroxy-3-nitro-5-methyl acetophenone by reacting it with six different aromatic aldehydes by reported method in solvent ethanol using 40% NaOH. The physical data of compound (Ia) to (If) are given in Table 1.

Reaction Scheme 1

The groups R are shown in Table 1.

Table 1

Compound No.	R	Mol. formula	M.P. (⁰ C)	Yield (%)
(Ia)		C ₁₆ H ₁₃ NO ₄	120	66
(I b)	COCH3	C ₁₇ H ₁₅ NO ₅	117	68
(Ic)		$C_{16}H_{12}N_2O_6$	118	62

Cont...

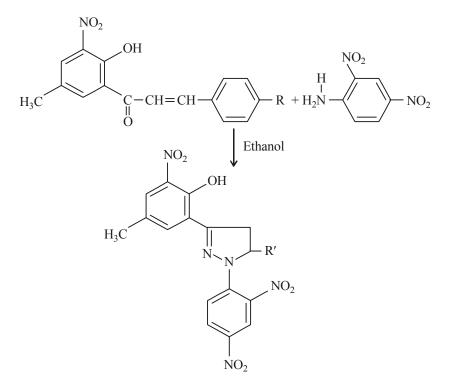
Compound No.	R	Mol. formula	M.P. (⁰ C)	Yield (%)
(Id)	OH OH	C ₁₆ H ₁₃ NO ₅	140	70
(Ie)	-HC=HC	C ₁₈ H ₁₅ NO ₄	152	63
(If)		C ₁₄ H ₁₁ NO ₅	92	60

Characterization data of compound (Ia)

IR (KBr) cm⁻¹: 3066.91 (hydrogen bonded OH stretching), 1641.48 (C=O stretching), 1558.54 (C-CH=CH stretching), 1348.29 (Ar-O stretching) and 1170.83 (stretching in phenol).

NMR data: 2.3 δ [(s) 3H, Ar-CH₃), 6.9 δ (dd, 1H = CH_a)], 7.1 δ [(dd, 1H = CH_b), 7.2 – 8.1 δ (m, 7H Ar-H)] and 9.95 δ [s, 1H – OH phenolic)]

Characterization data of compound (Id)


IR (KBr) cm⁻¹: 3578.07 (S, 1H – phenolic (OH), 3500.92 (S, 1H, phenolic OH), 1637.62 (C = O stretching), 1556.61 (C – CH = CH stretching), 1529.60 & 1350.22 (NO₂ stretching), 1247.99 (phenolic – OH stretching, Ar-O stretching) and 1159.26 (stretching in phenol).

NMR data: $2.25 - 2.30 \delta$ (S, 3H, Ar – CH₃), 6.9δ (1H = CHa), 7.1δ (1H, C = CHb), 7.7 - 8.4 (m, 6H, Ar – H), 10.25δ (Ar – OH), 13.3δ (Ar – OH)

Synthesis of substituted -3,5-diaryl-nitro- Δ^2 - pyrazolines (IIa – IIf)

Nitrochalcones (Ia – If) (0.01M) and 2, 4-dinitrophenylhydrazine (0.02M) were refluxed in 20 mL ethanol for 3.5 to 4.5 hours. Further processing was same as done in an earlier method. Thus, compounds (IIa – IIf) were synthesized and recrystallized. Physical data are shown in Table 2.

Reaction Scheme 2

The groups R' are given in Table 2.

Table 2

Compound No.	R'	Mol. formula	M.P. (⁰ C)	Yield (%)
(IIa)		$C_{22}H_{17}N_5O_7$	164	68
(IIb)	COCH3	$C_{23}H_{19}N_5O_7$	145	72
(IIc)		$C_{22}H_{16}N_6O_9$	118	62

Cont...

Compound No.	R'	Mole. Formula	M.P. (⁰ C)	Yield (%)
(IId)	OH OH	$C_{22}H_{17}N_5O_8$	160	66
(IIe)	-HC=HC	$C_{24}H_{19}N_5O_7$	105	60
(IIf)		$C_{20}H_{15}N_5O_8$	180	61

Characterization data for compound (IIa)

IR (KBr) in cm⁻¹: 3325.39 (br, OH stretching in Ar – OH), 1643 (S, CH₂ stretching), 1606.76 (C = N stretching), 1417.73 (CH₂ in pyrazoline), 1269.20 (C – N stretching) and 1062.81 (C – O stretching).

NMR data: $2.3 - 2.35 \delta$ (s, 3H, Ar – CH₃), 3.2δ (dd, 1H, dd > CHH_a) $3,3 \delta$ (dd, 1H, > CHH_b), $5 - 5.2 \delta$ (1H, CH_x), $7 - 8.5 \delta$ (m, 10H, Ar – H) and 10 δ (Ar – OH)

Characterization data for compound (IId)

IR (KBr) cm⁻¹: 3471.80 - 3458.48 (br, Ar–OH), 3325.39 (br Ar–OH), 1614.47 (S, CH₂ streching), 1591.33 (C = N streching), 1417.73 (CH₂ – streching in pyrazoline), 1512.24 and 1332.86 (NO₂ streching), 1224 (C – N streching) and 1134.18 (C – O streching in phenol).

NMR data: $2.15 - 2.35 \delta$ (s, 3H, Ar – CH₃), 3.25δ (dd, 1H, CHH_a), 3.3δ (dd, 1H, CHH_b), 5.1δ (1H, CH_x), $7.1 - 7.6 \delta$ (m, 9H – Ar – H), 9δ (s, 1H, Ar – OH) and 10δ (s, 1H Ar – OH).

RESULTS AND DISCUSSION

Compound (Ia - If) and (IIa - IIf) were synthesized through the route as shown in reaction schemes. Physical data of compounds are shown in Tables 1 and 2. The structures of synthesized compounds (Ia), (Id), (IIa) and (IId) were confirmed on the basis of IR and NMR elemental analysis.

ACKNOWLEDGEMENT

Author is thankful to Principal, Br. R. D. I. K. & N. K. D. College, Badnera, H. O. D. Chemistry, Br. R. D. I. K. & N. K. D. College, Badnera for providing encouragement and facilities and to Pune University, Pune for spectral analysis (I. R. and N. M. R).

REFERENCES

- 1. L. Claisen and A. Chaparede, Ber., 14, 2463 (1881).
- 2. St. Kostanencki, Voy and G. Rossbach, Ber., 29, 1492 (1896).
- 3. U. K. Sanfi, S. Datta and C. P. Datta, Natl. Acad. Sci. Lett. (India), 6(8), 271 (1983).
- 4. H. Z. Khatr and S. A. Vunii, J. Indian Chem. Soc., 58, 168 (1981).
- 5. N. B. Das and A. S. Mittra, Indian J. Chem., **16B**, 638 (1978).
- 6. S. G. Roelofvan, C. Arnold and Walmgak, Indian J. Agric. Food Chem., 27, 49 (1979).
- 7. H. G. George and Chandraprakash, J. Pharm. Sci., 14, 649 (1971).
- 8. K. Ozwa, V. Nakajuna, M. Jangeno, Ishis, M., Ratnaka, M. Hirrosha and M. Kado, Dur. Pat. Appl. Ep., 56, 4241 (1983).
- 9. Davood Azarifar and Maseud Shaebanzadehi, Molecules 7, 585 (2002).
- V. Harinatha Babu, Ch. Sridevi, A. Joseph and K. K. Srinivasan, Indian J. Pharm. Sci., 470 (2007).
- 11. Manavar, A. Manavar, Muhammad Azad, Makshoof Athar and Paul, W., Ground Water Versita, **63(3)**, 288 (2008).

Accepted : 10.01.2010