

SYNTHESIS OF S-TETRA-O-ACETYL GALACTOPYRANOSYL ARYLDITHIOCARBAMATES

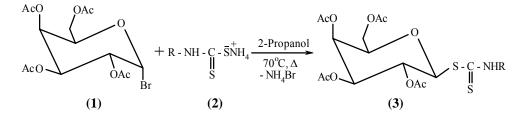
B. S. GABHE and S. P. DESHMUKH^{*}

P. G. Department of Chemistry, Shri Shivaji College, AKOLA - 444 001 (M.S.) INDIA

ABSTRACT

The interaction of tetra-*O*-acetyl galactopyranosyl bromide with ammonium aryldithiocarbamates results in the formation of *S*-tetra-*O*-acetyl galactopyranosyl aryldithiocarbamates. The identities of these newly synthesized thiogalactosides have been established on the basis of usual chemical transformation, IR, ¹H NMR and mass spectral studies. The compounds were screened for their antibacterial and antifungal activities against common pathogens like *E. coli, S. aureus, P. vulgaris, S. typhi, C. albicans* and *A. niger*. The compounds were found sensitive to these microorganisms.

Key words: Galactopyranosyl bromide, Ammonium aryldithiocarbamates, Galactopyranosyl aryldithiocarbamates, Antibacterial, Antifungal.


INTRODUCTION

Galactopyranosyl bromide¹⁻³ is a versatile and important intermediate in carbohydrate chemistry. It is used as a starting material in the synthesis of thiogalactosides. Carbohydrate derivatives bearing *S*-linked functionalities at anomeric position have attracted attention because of known fungicidal, insecticidal and anticarcinogenic properties^{4,5}. Acetyl derivatives of carbohydrate are interestingly becoming important in medicinal chemistry, industries and in many other ways⁶⁻⁹.

The present work deals with the synthesis of several *S*-tetra-O-acetyl galactopyranosyl aryldithiocarbamates (3). These were prepared by the interaction of tetra-O-acetyl galactopyranosyl bromide (1) and ammonium aryl dithiocarbamates (2).

The reaction scheme is given as -

^{*}Author for correspondence; E-mail: bhagyashreeg@rediffmail.com

Where R = (a) Phenyl, (b) *o*-Cl-Phenyl, (c) *m*-Cl-Phenyl, (d) *p*-Cl-Phenyl, (e) *o*-Tolyl, (f) *m*-Tolyl, (g) *p*-Tolyl

 $Ac = -COCH_3$

EXPERIMENTAL

IR spectra were recorded on FTIR Perkin-Elmer (4000-450 cm⁻¹) spectrophotometer. ¹H NMR spectra were run on Bruker DRX-300 instrument operating frequency 300 MHz using CDCl₃ solution with TMS as internal reference. Mass spectra were recorded on Micromass Quattro II triple quadrupole mass spectrometer. Specific rotations were recorded on Equip-Tronics digital polarimeter in CHCl₃ at 32°C.

General procedure

Isopropanolic (20 mL) suspension of tetra-*O*-acetyl galactopyranosyl bromide (0.01 M) and ammonium aryldithiocarbamate (0.01 M) was heated at 70°C and kept at room temperature for 18 hrs. The solid formed was filtered off and identified as NH₄Br. The reaction mixture was mixed with 100 mL distilled water. It afforded solid (**3a-g**). The products were crystallized by ethanol-water. Purity was checked by TLC (Table 2).

RESULTS AND DISCUSSION

Isopropanolic suspension of tetra-O-acetyl galactopyranosyl bromide and ammonium phenyldithiocarbamate was heated at 70°C and kept at room temperature for 18 hrs. Solid thus obtained was identified as NH₄Br. Clear filtrate on dilution with distilled water afforded a solid, which was purified by ethanol-water. It gave charring and was desulphurisable with alkaline plumbite.

The IR, ¹H NMR and Mass¹⁰⁻¹³ spectral analysis (experimental) and elemental analysis clearly indicated the product and the structure *S*-tetra-*O*-acetyl β -D-galactopyranosyl 1-phenyldithiocarbamate was assigned.

When the interaction of tetra-*O*-acetyl galactopyranosyl bromide¹⁴ was extended to other aryl-dithiocarbamates¹⁵, the related *S*-tetra-*O*-acetyl galactosyl-1- aryldithiocarbamates (**3a-g**) were obtained.

S-tetra-O-acetyl-β-D-galactopyranosyl-1-phenyldithiocarbamate (3a)

IR (**KBr**): 3449 cm⁻¹ (N–H), 1751 cm⁻¹ (C=O), 1446 cm⁻¹ (C-N), 760 cm⁻¹ (C–S), 915 cm⁻¹ (β -isomer of galactose), 1154 cm⁻¹ (C=S)

¹**H NMR:** δ 8.16 (1H, s, N-H), δ 7.4-7.1 (5H, m, Ar-H), δ 5.4-4.0 (7H, m, galactose unit), δ 2.3-1.8 (12H, m, 4 OAc)

Mass (m/z): 499, 331, 229, 169, 109.

Anal. Calcd for $C_{21}H_{25}O_9NS_2$: C, 50.49; H, 5.04; N, 2.80; S, 12.84. Found : C, 50.94; H, 4.76; N, 2.71; S, 12.60 %.

S-tetra-O-acetyl β-D-galactopyranosyl-1-m-Cl-phenyldithiocarbamate (3c)

IR (**KBr**) : 3411 cm⁻¹ (N-H), 1751 cm⁻¹ (C=O), 1429 cm⁻¹ (C-N) 773 cm⁻¹ (C-S), 915 cm⁻¹ (β -isomer of galactose) 1154 cm⁻¹ (C=S).

¹**H NMR** : δ 8.2 (1H, s, N-H), δ 7.4 - 7.1 (4H, m, Ar-H) δ 6.6 - 3.9 (7H, m, galactose unit), δ 2.1 - 1.2 (12H, m, 4 OAc)

Mass (m/z): 533, 331, 169, 229, 109.

Anal. Calcd for $C_{21}H_{24}O_9NS_2Cl$: C, 47.23; H, 4.53; N, 2.62; S, 12.01. Found C, 46.86; H, 4.89; N, 2.49; S, 11.90 %.

S-tetra - O- acetyl - β-D-galactopyranosyl-1-o-tolyl-dithiocarbamate (3e)

IR (**KBr**) : 3432 cm⁻¹ (N-H), 1751 cm⁻¹ (C=O), 1496 cm⁻¹ (C-N) 759 cm⁻¹ (C-S), 917 cm⁻¹ (β -isomer of galactose), 1154 cm⁻¹ (C=S).

¹**H NMR** : δ 7.5 (1H, s, N-H), δ 7.4 - 7.0 (4H, m, Ar-H) δ 5.4- 5.0 (7H, m, galactose unit), δ 2.3 - 1.2 (15H, m, 4 OAc + Ar -CH₃)

Mass (m/z): 513, 331, 229, 169, 109.

Anal. Calcd for $C_{22}H_{27}O_9NS_2$: C, 51.45; H, 5.30; N, 2.73; S, 12.49. Found : C, 51.17; H, 5.53; N, 2.60; S, 12.27 %.

Antimicrobial study

The compounds were taken at a concentration of 1 mg/mL using dimethyl formamide (DMSO) as a solvent. The drug solution was allowed to diffuse for about an hour into the medium. The plates were incubated at 37°C for 24 hr. for antibacterial activity and at 30°C for 48 hr for antifungal activity.

The zone of inhibition observed around the wells after respective incubation was measured in mm by using antibiotic zone reader.

Table 1: Antimicrobial	activities	of	some	newly	synthesized	thiogalactosides	(3a-g)
(given in mm)							

S. No.	Name of compound		Sa	Pv	St	Ca	An
3a	S-Tetra-O-acetyl galactosyl phenyl dithiocarbamate		7	8	7	13	10
3b	S-Tetra-O-acetyl galactosyl-o-Cl- phenyl dithiocarbamate	11	13	9	6	15	10
3c	S-Tetra-O-acetyl galactosyl-m-Cl- phenyl dithiocarbamate	12	19	7	11	8	12
3d	S-Tetra-O-acetyl galactosyl-p-Cl- phenyl dithiocarbamate	9	18	10	7	9	12
3e	S-Tetra-O-acetyl galactosyl-o-tolyl dithiocarbamate		15	9	8	15	10
3f	S-Tetra-O-acetyl galactosyl-m- tolyl dithiocarbamate	6	12	7	11	14	11
3 g	S-Tetra-O-acetyl galactosyl-p- tolyl dithiocarbamate		13	10	7	10	11

Where Ec = E. *coli*, Sa = S. *aureus*, Pu = P. *vulgaries*, St = S. *typhi*, Ca = C. *albicans* and An = A. *niger*

Reactant (g)	Product	m.p. (°C)	Yield g (%) -	•	s Found/ uired)	[α] _D ²⁷ (c, in	R _f (3 : 1 CHCl ₃ - EtOAc)	
				N (%)	S (%)	CHCl ₃)		
1a (1.8)	3 a	150-152	1.5 (30.61)	2.71 (2.80)	12.60 (12.84)	+ 176° (c,1.00)	0.92	
1b (2.2)	3b	146-149	2.0 (37.52)	2.50 (2.62)	11.89 (12.01)	-222° (c,1.006)	0.96	
1c (2.2)	3c	118-120	1.6 (30.01)	2.49 (2.62)	11.91 (12.01)	-185° (c,0.993)	0.69	
1d (2.2)	3d	176-178	1.8 (33.77)	2.45 (2.61)	11.84 (12.01)	+ 244° (c,0.966)	0.91	
1e (2.0)	3e	180-182	2.3 (44)	2.60 (2.72)	12.27 (12.49)	+ 108° (c,0.98)	0.94	
1f (2.0)	3f	167-168	1.8 (35.08)	2.62 (2.72)	12.25 (12.49)	- 324° (c,1.00)	0.72	
1g (2.0)	3g	190-192	2.0 (38.98)	2.59 (2.72)	12.20 (12.49)	+ 89.02° (c,0.966)	0.70	

Table 2: Physical data of *S*-tetra-*O*-acetyl β-D-galactopyranosyl-1-aryldithiocarbamates (3a-g)

ACKNOWLEDGEMENTS

The authors are thankful to RSIC, CDRI, Lucknow for providing spectral data. The authors are also thankful to the Principal Dr. S. G. Bhadange for providing necessary facilities

REFERENCES

- 1. C. Prata, N. Mora, J. M. Lacombe, J. C. Maurizis and B. Pucci, Cartbohydr. Res., **321**, 4–14 (1999).
- 2. H. P. Kleine, D. V. Weinberg, R. J. Kaufman and R. S. Sidhu, Carbohydr. Res., **142**, 333-337 (1985).

- 3. L. A. Reed and L. Goodman, Carbohydr. Res., 94, 91-99 (1981).
- 4. J. M. Garcia- Fernandez and C. Ortiz-Mellet, Adv. Carbohydr. Chem. Biochem., 55, 95-98 (2000).
- 5. S. K. Bhagat, A. K. Fokmare and S. P. Deshmukh, Oriental J. Chem., **17**, 437-440 (2001).
- 6. D. V. Mangte and S. P. Deshmukh, Int. J. Chem. Sci., 2, 159-163 (2004).
- 7. I. Goodman, Adv. Carbohydr. Chem. Biochem., **13**, 215-236 (1958).
- 8. J. J. Garcia-Lopez, F. Hernandez-Mateo, J. Isac-Garcia, J. M. Kin, R. Roy, F. Santoyo-Gonzalez and A. Vargas- Berenguel, J. Org. Chem., **64**, 522-531 (1999).
- 9. A. S. Dandale, D. V. Mangte and S. P. Deshmukh, Carbohydr. Res., **342**, 753-756 (2007).
- R. M. Silverstein, G. C. Bassler and T. C. Morrill, Spectrometric Identification of Organic Compounds 5th Ed.. John Wiley and Sons, Inc. NY (1991).
- 11. J. R. Dyer, Applications of Absroption Spectroscopy of Organic Compounds, Prentice Hall (1991).
- 12. S. A. Barker, J. Homer, M. C. Keith and L. F. Thomas, J. Chem. Soc., 1538-1543 (1963).
- 13. R. Varma, S. Y. Kulkarni, C. I. Jose and V. S. Pansare, Carbohydr. Res., **133**, 25-32 (1984).
- 14. M. Hunsen, D. A. Long, C. R. D'Ardenne and A. L. Smith, Carbohydr. Res., **340**, 2670-2674 (2005).
- 15. A. I. Vogel, A Text Book of Practical Organic Chemistry, Vol. V, ELBS, Longman (1989) p. 967.

Revised : 15.04.2010

Accepted : 20.04.2010