June 2008

Trade Science Inc.

Organic CHEMISTRY

An Indian Journal 🖚 FUII Paper

OCAIJ, 4(4), 2008 [304-308]

Synthesis of some azetidinones with coumarinyl moiety and their antimicrobial activity

Brish.M.Sharma*, M.V.Parsania, A.J.Baxi Department of Chemistry, Saurashtra University, Rajkot, (GUJARAT) E-mail: brishchemprish@ yahoo.com Received: 25th April, 2008; Accepted: 30th April, 2008

ABSTRACT

Compounds bearing azetidinone moiety having β-lactam ring which is an antibiotic still in the list of the prescription^[1] are endowed with a variety of biological activities such as sedative, hypnotic, anticonvulsant^[2,3], herbicidal^[4] and antibacterial^[5]. Looking over to these properties it was contemplated to synthesis some Azetidinones having coumarin moiety type(II) which may enhance the biological activity with least side effect. The structures of type (II) have been characterized by the elemental analysis and the spectral data. The compounds were screened for their antimicrobial activity using different strains of Bacteria's and Fungi. © 2008 Trade Science Inc. - INDIA

INTRODUCTION

Benzopyrones forms a fascinating group of the compounds occurring widely both in free and combined states. Benzo- α pyrones so called coumarin is a mile stone in a path of natural chemistry; due to its varied biochemical & analytical applications^[6].

Due to its varied industrial use in perfumery, backery, beverages, soap, tobacco, rubber and plastic industries, a considerable amount of work has been some coumarins & has been reviewed by a number of workers^[7,8].

Coumarin derivatives are reported to have an excellent biological activity such as anthelmintic^[9], antiallergic, antiarthritic^[10], antibacterial^[11], anticancerous ^[12], anticoagulant^[13], antifungal^[14], antiinflamatory^[15], antimalarial^[16], antinaphylactic^[10], antiproliferative^[17], antispasmodic^[18], hypnotic^[19], hypolipidimic^[20], hypotensive^[21], insecticidal ^[22], antifertility^[23], potential KEYWORDS

Schiff's base; Azetidinones: Antimicrobial activity.

nervous system depressant sedative^[24].

It would enhance the therapeutic activity, if the coumaringl moiety is joined with the moiety having β lactam ring. During synthesis of substituted azetidinones, we came across different synthetic routes adopted by different workers.Parikh^[25] and Joshi^[26] synthesized azetidinones requiring 5 hour stirring and keeping reaction mixture for 3 days for the reaction of acetyl chloride or chloroacetylchloride with Schiff's base using Dioxane as solvent and Triethyl amine as the catalyst reporting 65% yield.

The starting compound i.e. Schiff's base 7-(4'methoxybenzal hydrazino carbonyl methoxy)-4-methyl coumarin was characterized by elemental analysis as well as various spectroscopic data.

EXPERIMENTAL

305

All the melting points are taken in an open capillary tube and all uncorrected I.R spectra (KBr) were recorded on Perkin Elmer spectrometer and 1H NMR spectrometer at 300MHz. the purity of compound was checked by TLC using Silica gel-G.

Preparation of the Schiff base[7-(substituted benzal hydrazinocarbonylmethoxy)-4-methylcoumarin]

(A) Preparation of 4-methyl-7-hydrazinocarbonylmethoxycoumarin^[27]

The 7-Hydroxy-4-methyl coumarin was esterified stirring for 12 hrs. with ethylchloroacetate in acetone and refluxed. The ester formed was then taken in rectified spirit to which hydrazinehydrate was added and further refluxed for 8Hrs. then after it is cooled and poured in ice to give crystalline product with (m.p. -115°C).yield 75%

(Found C-58.06%, H-4.83% and N-11.29%; Calculated C - 58.10%, H-4.78% and N-11.33%) For C_{12} H_{12} N_2O_4 .

(B) Preparation of Schiff's Base[4-methyl-7-(substituted benzylhydrazinocarbonylmethoxy) coumarin]^[27]

A mixture of hydrazine (0.01M, 2.48 gm) was dissolved in alcohol then p-Anisaldehyde (0.01 M, 1.36 gm) was added to it, refluxed for four hours. The reaction mixture was cooled and the product was isolated as well as crystallized in DMF to give shinning white crystal (m.p 248°C) Yield 75%, (Found C-65.52%, H-4.9% and N-7.62%; Calculated C-65.57%, H-4.9% and N-7.65%) For C_{20} H₁₈ N₂ O₅.

Similarly other Schiff bases were prepared. The physical constants are recorded in TABLE 1.

TABLE 1

(A)	4-methyl-7-[(4'-m	nethoxybenzyl
hydre	azinocarhonylmetl	hovyl coumarin

	nyurazmocarbonymetnoxy] coumarm							
e.,				Ppercentage %				
Sr.	R.	Mol. Form.	°C	X7: al.d	Ν	Ν		
по.			C	r iela	Calc.	found		
1	Phenyl	C ₁₉ H ₁₆ N ₂ O ₄	254	70	8.30	8.28		
2	3-Aminophenyl	$C_{19}H_{17}N_3O_4$	256	65	11.97	11.94		
3	4-Aminophenyl	$C_{19}H_{17}N_3O_4$	225	65	11.97	11.95		
	5-bromo-4-							
4	hydroxy-3-	$C_{20}H_{17}N_2O_6Br$	250	70	6.07	6.06		
	methoxyphenyl							
5	2-chlorophenyl	$C_{19}H_{15}N_2O_4Cl$	263	70	7.56	7.54		
6	5-chlorophenyl	$C_{19}H_{15}N_2O_4Cl$	218	70	7.56	7.52		
7	3,4-dibromo-2-	C H NOP	260	65	5 50	5 52		
/	hyroxy phenyl	$C_{19}\Pi_{14}\Pi_{2}O_{5}\Pi_{2}$	200	05	5.50	5.52		
Q	3,4-		265	65	6.03	6.02		
0	dichlorophenyl	$C_{19} I_{14} I_{2} O_{4} C_{12}$	205	05	0.95	0.92		
0	3,4-	СНИО	270	65	7.07	7.08		
,	dimethoxyphenyl	$C_{21}\Pi_{20}\Pi_{2}O_{6}$	270	05	7.07	7.08		
10	3,4-dimethoxy-5-	CHNO	175	75	0.52	0.52		
10	nitrophenyl	$C_{21} I_{191} V_3 O_8$	175	15	7.32	9.32		
11	4-Methoxypheny	1C20H18N2O5	248	75	7.65	7.62		

(B) N.M.R spectral data				
Signle no.	δ p.p.m	No.of protons	Multiplicity	Inference
1	2.35	3H	Singlet	-CH3
2	3.75	3H	Singlet	-OCH3
3	4.60	2H	Singlet	-OCH2-
4	6.80	1H	Singlet	-N=C <u>H</u> -Ar
5	6.9	1H	Singlet	-CH-coumarin
6	7.5-7.9	8H	Multiplet	Aromatic H
7	8.1	1H	Singlet	-CO-N <u>H</u> -N=

(C) IR Spectral study (SHIMADZU-2245)

Tune	Vibratian made	Fre	Def	
Type	vibration mode	Obs.	Reported	Kel.
Alkane	-C-H str.(asym)	2950	2975-2950	[28-29]
-CH ₃	-C-H str. (sym)	2855	2880-2860	-
CH	-C-H str.(asym)	2935	2940-2915	-
-CH ₂	-C-H str. (sym)	2875	2890-2845	-
	-C-H str.	3050	3080-3030	-
Aromatia		1620	1612-1600	-
Alomatic (1.4 jourhot)	C-C at	1580	1585-1573	-
(1-4-Isubst.)) - C - C - su.	1500	1520-1480	-
		1405	1417-1401	-
	-N-H. str. (asym.)	3455	3550-3250	-
	-N-H. str. (sym.)	3310	3450-3250	-
Amide	-N-H. def,	1550	1650-1580	-
-CO-NH-N-	-C-N. str.	1120	1220-1020	-
	-C=O str.	1690	1680-1630	-
	Schiffbase linkage	1630	1690-1580	-
CU2	-C-O-C-(asym.)	1275	1275-1200	-
-CH3	-C-O-C(sym.)	1050	1075-1020	-
Coumarin	C 0	1725	1725-1730	-
moiety	-C=0	1275	1275-1200	

2. Preparation of 4-(4" methoxyphenyl)-3-chloro-1-(4' methyl-7'-carbamoylmethoxycoumarinyl)-2azetidinones

Schiff's base (0.01M 3.66gm) was taken in Dioxan (60ml0, to it chloroacetyl chloride (0.01M 0.079 ml) was addedslowly at the room temperature with constant stirring, then triethylamine was added (0.01 M,1.39ml) the whole mixture was stirred at 80°C temperature for about 8 hours a and was left over for crystalisation for 2-3 days . the excess of the solvent was distilled off and the product was isolated and recrystalised in dioxin Yield -55%; m.p.-218°C, elemental analysis found was C-59.71%; H-4.29%; N-6.28% and Calculated C-59.68%, H-4.3% and N-6.43%).

 TABLE 2: 4-(4" methoxyphenyl)-3-chloro-1-(4' methyl-7'carbamoylmethoxy-coumarinyl)-2-azetidinones

(a) Physical constants					
			Per	centa	ge %
R.	Mol. form.	M.p °C	Yield	N Calc	N found
Phenyl	C ₂₁ H ₁₇ N ₂ O ₅ Cl	225	55	6.79	6.79
3-Aminophenyl	C21H18N3O5Cl	180	60	9.83	9.83
4-Aminophenyl	C21H18N3O5Cl	260	50	9.83	9.83
	(a) R. Phenyl 3-Aminophenyl 4-Aminophenyl	Physical constant R. Mol. form. Phenyl C ₂₁ H ₁₇ N ₂ O ₅ Cl 3-Aminophenyl C ₂₁ H ₁₈ N ₃ O ₅ Cl 4-Aminophenyl C ₂₁ H ₁₈ N ₃ O ₅ Cl	(a) Physical constants R. Mol. form. M.p °C Phenyl C ₂₁ H ₁₇ N ₂ O ₅ Cl 225 3-Aminophenyl C ₂₁ H ₁₈ N ₃ O ₅ Cl 180 4-Aminophenyl C ₂₁ H ₁₈ N ₃ O ₅ Cl 260	$\begin{array}{c c c c c c c } \hline \mbox{(a) Physical constants} \\ \hline \mbox{(a) Physical constants} \\ \hline \mbox{(a) Physical constants} \\ \hline \mbox{(b) R.} & \mbox{Mol. form.} & \mbox{M.p} \\ \hline \mbox{Mol. form.} & \mbox{Mol. form.} \\ \hline Mol$	$\begin{array}{c c c c c c c } \hline (a) Physical constants \\ \hline (a) Physical constants \\ \hline (a) Physical constant \\ \hline (a) Phenyl \\ Phenyl \\ 3-Aminophenyl \\ 4-Aminophenyl \\ C_{21}H_{18}N_{3}O_{5}Cl \\ C_{21}H_{18}N_{3}O_{5}Cl \\ C_{21}H_{18}N_{3}O_{5}Cl \\ 260 \\ 50 \\ 9.83 \\ \hline (a) Physical constant \\ \hline (b) Physical constant$

Organic	CHEMISTRY		
	An Indian Journal		

		(A)	Physical (consta	ints			
Sr.					m.p	Percentage %		
no.	R	•	Mol. for	rm.	°C	Yield	N Calc	N found
	5-Broi	mo-4-					Calc	Touna
4	hydro	xy-3-	C22H18N2O	Cl Br	195	45	5.21	5.21
	methoxy	phenyl	- 22 10 2 -	/ -				
5	2-Chlore	ophenyl	$C_{21}H_{16}N_2$	O_5Cl_2	185	40	6.27	6.27
6	5-Chlore	ophenyl	$C_{21}H_{16}N_2$	O_5Cl_2	175	55	6.27	6.27
7	3,4-Dibr	omo-2-	C. H. N.O	ClBr	180	60	4 90	4 91
/	hyroxy	phenyl	C ₂₁ 11 ₁₅ 1 v ₂ O	6CIDI2	100	00	4.90	4.91
8	3,4	4-	C21H15N2	O ₅ Cl ₂	150	70	5.83	5.83
	Dichloro	ophenyl	- 21 15 2	- 5 - 5				
9	3,4 Dimether	4- 	$C_{23}H_{21}N_2$	O7Cl	205	50	5.93	5.93
	3 4-Ddin	cypnenyi pethoxy-	yı					
10	5.nitro	nhenvl	$C_{23}H_{20}N_3$	O ₉ Cl	165	50	8.12	8.12
11	4-Methox	vnhenvl	CapH10Na	O₂Cl	218	55	6.43	6.28
		(B) N	I.M.R sne	etral	data		01.10	0.20
Signal		(1)1	<u></u>	cuu				
no.	δ p.j	p.m	No.of pro	otons	Mult	iplicity	Infe	rence
1	2.3	35	3H		Si	nglet	C	H ₃
2	4.0)1	3Н		Sii	nglet	-00	CH ₃
3	4.	6	2H		Siı	nglet	-00	$2H_{2}$ -
					<i>.</i>		-C	H-
4	6.0)]	IH		Singlet		Az	zet.
5	6.	8	1H		Doublet		-CF	I-Cl
			111				-C	H-
6	6.95		IH S		Sii	nglet	Com	marin
7	7.5-	75-77 4H			Mu	ltiplet		
,	7.0				1,10	mpier	-CO	-NH-
8.	7.	9	1H		Siı	nglet	N	J=
	(C) IR	spectra	al study (SHIN	IADZ	ZU-224	5)	
	n	X 7 1	• •	Fr	eq in	cm ⁻¹	F	kef.
_	lype	vibrat	ion mode	Obs.	Re	ported		
A 11	- CU	-C-H st	r.(asym)	2955	297	5-2950	[28	8-29]
AIKan	$e - CH_3$	-C-H st	r. (sym)	2865	288	0-2860)	-
		-C-H st	r.(asym)	2850	285	0-2765	i	-
-CH ₂		-C-H so	ci.	1440	148	0-1440)	-
2		-C-H tv	visting	1255	1	250		-
		-C-H st	r.	3075	308	0-3030)	-
				1612	161	2-1600)	-
Arom	atic			1575	158	5-1573		-
(1-4-d	lisubst.)	-C=C-	str.	1485	152	0-1480)	-
	,			1401	141	7-1401		-
		-C-H (0	oop) def.	830	83	2-802		-
		-N-H.st	tr.(asvm.)	3450	355	0-3250)	-
		-N-H. s	str.(svm.)	3250	335	0-3250)	-
		-C-N. s	tr. +					
Amid	e	-N-H o	lef II	1550	157	0-1580)	-
-CO-1	NH-N-	band						
		-C-N. s	tr. + -N-					
		H def I	II band	1305	130	5-1200)	-
		-C=0 s	tr.2°	1650	168	0-1630)	-
		-C-0-0	C-(asvm.)	1210	127	5-1200)	-
Ether	Iinkage	-C-O-C	C(sym.)	1075	107	5-1020)	
Coum	arin	-C=0	(· J -· /	1725	172	5-1730)	-
moiet	v	α-lacto	nic ring	1260	122	0-1260)	-
		C=0 (s	tr.)	1715	176	0-1660)	_
		<u> </u>		1,15		5 1000		

> Full Paper

 TABLE 3: Anti microbial activity of 4-(Substituted phenyl)-3

 chloro-1-(4' methyl-7'-carbamoylmethoxycoumarinyl)-2

 azetidinones

6		Zone of inhibition in mm.					
Sr.	Compound		Fungi				
no.		B.maget	S.Citrus	E.coli	S.Typhosa	A.Niger	
1	Phenyl	15	15	16	21	16	
2	3-Aminophenyl	13	15	18	14	18	
3	4-Aminophenyl	19	16	10	18	15	
	5-bromo-4-						
4	hydroxy-3-	16	17	18	18	16	
	methoxyphenyl						
5	2-chlorophenyl	13	13	10	20	16	
6	5-chlorophenyl	16	20	15	13	16	
7	3,4-dibromo-2-	17	10	16	14	14	
/	hyroxy phenyl	17	19	10	14	14	
8	3,4-dichlorophenyl	16	16	10	10	14	
0	3,4-	15	14	20	10	16	
9	dimethoxyphenyl	15	14	20	10	10	
10	3,4-dimethoxy-	14	12	10	15	16	
10	5-nitrophenyl	14	15	12	15	10	
11	4-Methoxyphenyl	13	12	17	17	19	
12	Ampicillin	23	26	24	25	-	
13	Chloramphenicol	27	22	21	23	-	
14	Norfloxacin	22	27	25	27	-	
15	Griseofulvin	-	-	-	-	24	

The azetidinones were characterized by elemental analysis as well as supported by its various spectroscopic data as shown in TABLE 2.

Antimicrobial activity 4-(4"methoxyphenyl)-3chloro-1-(4' methyl-7'-carbamoylmethoxycoumarinyl)-2-azetidinones

Method :	Cup-plate method ^[29,30]
Gram positive bacteria	Bacillus Mageterium (2087)
	Staphylococcus citrus
Gram negative bacteria	Escherecia Coli
	Salmonella Typhosa
Fungus	Aspergillus niger
Concentration	50µ gm

Solvent used Standard Drugs Dimethyl Formamide Ampicilin; Chloramphenicol Norfloxacin; Griseofulvin

The nutrient agar broth and sterilized sabouraud's agar prepared by the usual method, was inocculated aseptically with 0.5ml of 24 hour old subculture of various bacteria in separate conical flasks at 40-50°C and mixed well by gentle shaking. About 25 ml of agar broth was poured and evenly spread over sterilized Petri dish (13 cm in diameter) and allowed to set for 2 hours. The cups (10mm in diameter) were formed by help of the cork borer in agar medium and inoculated with various bacteria and fungi separately the cups were filled with 0.05ml (1mg/ml) of all the test samples of azetidinones in DMF solution the plates were incubated at 37°C for 24 hours and the control was also maintained with 0.05 ml of DMF in same way the Zones of inhibition were measured in mm. and recorded in TABLE 3.

RESULTS AND DICUSSIONS

The compounds were screened for both gram positive and gram negative bacterias and fungus by the Cupplate method^[27,34].

The compound no-(1) and (5) were considerably active against S.Typhosa as compared with the standard drugs, for *E.coli* compound no. (2) and (4) are moderately active and compound no- (9) shows similar activity as compared to standard drug. For gram positive bacteria *S.citrus* bacteria compound (6) and (7). And for *B.mageterium* compound (3) showed moderate activity as compared to standard drug.

In case of antifungal activity against *A.niger* almost all the compounds showed low activity other than compound no-(2) and (11) showed preferable activity report comparing with the standard drug.

ACKNOWLEDGMENT

The authors are greatful to Department of Chemistry Saurashtra University Rajkot for providing total research facility and CDRI Lucknow for the various spectral analysis.Special thanks to the trustees and principals of institutes Shri M.D. Science college Porbandar and Shri M.M.Science college Morbi.

Full Paper REFERENCES

- Kamiyat; Res.Lab.Fujisawa Pharm.Co.Ltd. Osaka Japan, **112**, 29-43 (**1976**); N.Kagaku, Pyoiki Zokan; Chem.Abstract, <u>86</u>, 16566a (**1977**).
- [2] G.Maffii, S.P.A.Cleptit; Chem.Abst., 53, 20553b (1959).
- [3] G.Maffii; II Farmaco, 14, 176-93 (1959).
- [4] Hotz, D.Roger, Krenzer John; U.S.Patent, 3958-974, Chem.Abst., <u>12</u>, 697 (1917).
- [5] A.K.Bose, M.S.Mannar, J.C.Kapoor, S.D.Sharma; J.Med.Chem., 17(5), 541-4 (1974).
- [6] P.K.Bose; J.Ind.Chem.Soc., 35, 367 (1958).
- [7] S.M.Sethna, N.M.Shah; Chem.Rev., 36, 1 (1945).
- [8] S.Wawzonek, R.C.Elder Field (Ed.); 'Heterocyclic Compounds', John Willey and Sons Inc., NewYork, 2, 173 (1953).
- [9] R.R.Mohan, C.Agarwal, V.S.Misra; Indian Drugs, 21g, 389-92 (1984); Chem.Abst., <u>101</u>, 210928 (1984).
- [10] Chiarino Dario, G.C.Gramcini, F.Viviana, Carenz Angelo; Chem.Abst., 110(13), 114824 (1989).
- [11] D.GuoHong Linghan, Li Ming Hua; Zhongguo Yaoke Daxuew Xuebao, 18(3), 165-8 (1987); Chem.Abstr., <u>109</u>, 54524m (1988).
- [12] R.C.Elderfield, J.Roy; J.Med.Chem., 10, 918 (1957).
- [13] S.W.Castro, A.Desouza, N.Bemardino, B.Pedido; Chem.Abstr., 110, 135088V (1989).
- [14] Y.K.Ahluwalia, Anand Saroj, M.Goyal, G.A. Neghipur; Bokin Baboi, 11(11), 622-26 (1983); Chem.Abstr., <u>100</u>, 191697y (1984).
- [15] C.A.Gandolfi, O.Tofanetti, Spinelli Silvano; Chem.Abstr., 105(15), 133754f (1986).
- [16] T.Q.Chou, F.Y.Fu, Y.S.Koo; J.Am.Chem.Soc., 70,

Organic CHEMISTRY

An Indian Journal

1765 (**1948**).

- [17] P.Rodhighiero, P.Manzini, G.Pastorini, A.Guiotto; J. Hetro.Chem., 18(3), 447 (1987).
- [18] A.K.Panigrahi, P.K.Jesthi, M.K.Rout; J.Proc.Inst. Chem., 38(4), 171-4 (1966); Chem.Abstr., <u>66</u>, 75876 (1967).
- [19] F.W.Weder; Mercks Jahresbertichte, 50, 88 (1936).
- [20] D.R.Shridhar, C.R.Sarma, Ram Bhagat; Ind.J. Chem., 22B(8), 835-6 (1983); Chem.Abstr. <u>100</u>, 68126 (1983).
- [21] H.Umezawa, M.Kataoka, K.Hosoi, N.Kawabe, M. Ohno, T.Takeuchi; Chem.Abstr., 83, 206102 (1975).
- [22] Chen Jing Ting, Gao Chamglau, Jinxia Xu, Faming Zhuauli, Shenquing Gonkai; Chem. Abstr., 116, 17209m (1992).
- [23] S.S.Tiwari, S.Kumar; Ind.J.Applied Chem., 34(3-4), 182-4 (1972).
- [24] R.B.Moffet; Ibid, 7, 4466 (1954); U.S. 3156 697 (1954).
- [25] V.B.Gaur, V.H.Shah, A.R.Parikh; Ind.J.Hetr.Chem., 1,141 (1991).
- [26] V.S.Bhagwat, J.A.Parvate, M.N.Joshi; J.Ind.Chem. Soc., 69, 231 (1992).
- [27] H.C.Yale, V.K.Lose, J.Martin; J.Am.Chem.Soc., 75, 1933 (1953).
- [28] V.M.Poul; 'Absorption Spectroscopy of organic Molecules', Addison-Wesley Pub. Co., London, 243-258 (1978).
- [29] A.L.Barry; 'The Antimicrobial Susceptibility Test: Principle and Practices', Illus Lea and Febiger; Philadelphia.Pa. U.S.A., 180-93 (1976); Chem. Abstr., <u>64</u>, 25183 (1977).
- [30] A.G.Brown, S.M.Roberts; The Royal Society of Chemistry Buulington House London, (U.K.) (1984).